Admissible speeds of transition fronts for nonautonomous monostable equations

We consider a reaction-diffusion equation with a nonlinear term of the Fisher-KPP-type, depending on time $t$ and admitting two limits as $t\to\pm\infty$. We derive the set of admissible asymptotic past and future speeds of transition fronts for such an equation. We further show that any transition front which is noncritical as $t\to-\infty$ always admits two asymptotic past and future speeds. We finally describe the asymptotic profiles of the noncritical fronts as $t\to\pm\infty$.

[1]  Koichi Uchiyama,et al.  The behavior of solutions of some non-linear diffusion equations for large time , 1977 .

[2]  L. Rossi,et al.  Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients , 2015, 1603.00428.

[3]  Henri Berestycki,et al.  Generalized travelling waves for reaction-diffusion equations , 2006 .

[4]  A. Ducrot,et al.  Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations , 2012, 1203.6206.

[5]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[6]  W. Saarloos,et al.  Front propagation into unstable states : universal algebraic convergence towards uniformly translating pulled fronts , 2000, cond-mat/0003181.

[7]  Wenxian Shen,et al.  Traveling Waves in Diffusive Random Media , 2004 .

[8]  L. Rossi,et al.  Transition fronts for the Fisher-KPP equation , 2014, 1404.2821.

[9]  L. Rossi,et al.  Transition waves for a class of space-time dependent monostable equations , 2014 .

[10]  Xiao-Qiang Zhao,et al.  Asymptotic speeds of spread and traveling waves for monotone semiflows with applications , 2007 .

[11]  Grégoire Nadin Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations , 2015 .

[12]  K. Lau On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov , 1985 .

[13]  Andrej Zlatoš,et al.  Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability , 2009, 0901.2369.

[14]  L. Rossi,et al.  Propagation phenomena for time heterogeneous KPP reaction–diffusion equations , 2011, 1104.3686.

[15]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[16]  Wenxian Shen,et al.  Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models , 2010 .

[17]  Thomas Giletti,et al.  Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems , 2013, 1304.0832.

[18]  M. Bramson Convergence of solutions of the Kolmogorov equation to travelling waves , 1983 .

[19]  Lionel Roques,et al.  Fast propagation for KPP equations with slowly decaying initial conditions , 2009, 0906.3164.

[20]  Lenya Ryzhik,et al.  Existence and Non-Existence of Fisher-KPP Transition Fronts , 2010, 1012.2392.

[21]  Benjamin Engel,et al.  Biological Invasions: Theory and Practice , 1998 .

[22]  Yoshinori Kametaka,et al.  On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type , 1975 .

[23]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: II. Existence , 1999 .

[24]  W. Shen Existence of Generalized Traveling Waves in Time Recurrent and Space Periodic Monostable Equations , 2011 .

[25]  Andrej Zlatoš Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations , 2011, 1103.3094.

[26]  Traveling fronts in space-time periodic media , 2009, 1609.01431.

[27]  W. Shen Existence, Uniqueness, and Stability of Generalized Traveling Waves in Time Dependent Monostable Equations , 2011 .

[28]  Henri Berestycki,et al.  Generalized Transition Waves and Their Properties , 2010, 1012.0794.

[29]  E. Yanagida Irregular Behavior of Solutions for Fisher’s Equation , 2007 .

[30]  J. Roquejoffre,et al.  The logarithmic delay of KPP fronts in a periodic medium , 2012, 1211.6173.

[31]  Lenya Ryzhik,et al.  A short proof of the logarithmic Bramson correction in Fisher-KPP equations , 2013, Networks Heterog. Media.

[32]  L. Roques,et al.  Uniqueness and stability properties of monostable pulsating fronts , 2011 .

[33]  Xiao-Qiang Zhao,et al.  Spreading speeds and traveling waves for abstract monostable evolution systems , 2010 .

[34]  Xiao-Qiang Zhao,et al.  Spreading speeds and traveling waves for periodic evolution systems , 2006 .

[35]  Henri Berestycki,et al.  The speed of propagation for KPP type problems. II , 2010 .

[36]  Jack Xin,et al.  Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds , 2005 .

[37]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[38]  J. Roquejoffre,et al.  How travelling waves attract the solutions of KPP-type equations , 2012 .

[39]  Jianhua Huang,et al.  Speeds of Spread and Propagation for KPP Models in Time Almost and Space Periodic Media , 2009, SIAM J. Appl. Dyn. Syst..

[40]  David H. Sattinger,et al.  On the stability of waves of nonlinear parabolic systems , 1976 .

[41]  Yihong Du,et al.  Convergence and sharp thresholds for propagation in nonlinear diffusion problems , 2010 .

[42]  Hiroshi Matano,et al.  Convergence of solutions of one-dimensional semilinear parabolic equations , 1978 .

[43]  Wenxian Shen,et al.  Dynamical Systems and Traveling Waves in Almost Periodic Structures , 2001 .

[44]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[45]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[46]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: I. Stability and Uniqueness , 1999 .