Nonlinear evolution equations solvable by the inverse spectral transform

[1]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[2]  M. Ablowitz,et al.  Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation. I , 1976 .

[3]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[4]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[5]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[6]  Chauncey D. Leake,et al.  British Association for the Advancement of Science , 1953, Science.

[7]  Jürgen Moser,et al.  Dynamical Systems, Theory and Applications , 1975 .

[8]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[9]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[10]  Antonio Degasperis,et al.  Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron , 1976 .

[11]  D. V. Choodnovsky,et al.  Pole expansions of nonlinear partial differential equations , 1977 .

[12]  Hugo D. Wahlquist,et al.  Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .

[13]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[14]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[15]  G. Brown Many-body problems , 1972 .

[16]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[17]  R. Rajaraman Some non-perturbative semi-classical methods in quantum field theory (a pedagogical review)☆ , 1975 .

[18]  F. Calogero Generalized Wronskian relations, one-dimensional Schrödinger equation and nonlinear partial differential equations solvable by the inverse-scattering method , 1976 .

[19]  L. Faddeev,et al.  Essentially nonlinear one-dimensional model of classical field theory , 1974 .

[20]  Special solutions of coupled nonlinear evolution equations with bumps that behave as interacting particles , 1977 .

[21]  Hsing‐Hen Chen General Derivation of Bäcklund Transformations from Inverse Scattering Problems , 1974 .

[22]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[23]  F. Calogero A method to generate solvable nonlinear evolution equations , 1975 .

[24]  F. Calogero BÄcklund transformations and functional relation for solutions of nonlinear partial differential equations solvable via the inverse scattering method , 1975 .