Comparing nonredundant masking and filled-aperture kernel phase for exoplanet detection and characterization

Abstract. The limitations of adaptive optics and coronagraph performance make exoplanet detection close to λ  /  D extremely difficult with conventional imaging methods. The technique of nonredundant masking (NRM), which turns a filled aperture into an interferometric array, has pushed the planet detection parameter space to within λ  /  D. For high Strehl, the related filled-aperture kernel phase technique can achieve resolution comparable to NRM, without the associated dramatic decrease in throughput. We present NRM and kernel phase contrast curves generated for ground- and space-based instruments. We use both real and simulated observations to assess the performance of each technique, and discuss their capabilities for different exoplanet science goals such as broadband detection and spectral characterization.

[1]  C. A. Haniff,et al.  Closure phase in high-resolution optical imaging , 1986, Nature.

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[4]  J. A. Eisner,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS , 2015, 1502.05412.

[5]  Laurent Loinard,et al.  VLBA Determination of the Distance to Nearby Star-forming Regions. II. Hubble 4 and HDE 283572 in Taurus , 2007, 0708.4403.

[6]  Sam Ragland,et al.  Understanding and correcting low order residual static aberrations in adaptive optics corrected images , 2014, Astronomical Telescopes and Instrumentation.

[7]  Laurent Pueyo,et al.  AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA , 2014, 1411.3446.

[9]  Zhaohuan Zhu,et al.  ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES , 2014, 1408.6554.

[10]  Benjamin J. S. Pope Kernel phase and kernel amplitude in Fizeau imaging , 2016 .

[11]  Adam L. Kraus,et al.  Orbital Motion and Multi-Wavelength Monitoring of LkCa15 b , 2013, Proceedings of the International Astronomical Union.

[12]  P. Tuthill,et al.  Michelson Interferometry with the Keck I Telescope , 2000 .

[13]  Frantz Martinache,et al.  DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY , 2013, 1302.6682.

[14]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[15]  Frantz Martinache,et al.  The Palomar Kernel Phase Experiment: Testing Kernel Phase Interferometry for Ground-based Astronomical Observations , 2015, 1510.06406.

[16]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[17]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[18]  W. Marsden I and J , 2012 .

[19]  William C. Danchi,et al.  Near-Infrared Interferometric Images of the Hot Inner Disk surrounding the Massive Young Star MWC 349A , 2001 .

[20]  Graham Woan,et al.  Determination of closure phase in noisy conditions , 1988 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Laurent Pueyo,et al.  Pandeia: a multi-mission exposure time calculator for JWST and WFIRST , 2016, Astronomical Telescopes + Instrumentation.

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  Vanessa P. Bailey,et al.  DIRECTLY IMAGED L-T TRANSITION EXOPLANETS IN THE MID-INFRARED, , 2013, 1311.2085.

[25]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[26]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[27]  M. Ireland,et al.  A Young Exoplanet Caught at Formation , 2011 .

[28]  Peter Tuthill,et al.  Improved Constraints on the Disk around MWC 349A from the 23 m LBTI , 2017, 1706.05010.

[29]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[30]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[31]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[32]  Sam Ragland,et al.  A novel technique to measure residual systematic segment piston errors of large aperture optical telescopes , 2018, Astronomical Telescopes + Instrumentation.

[33]  John D. Monnier Infrared Interferometry and Spectroscopy of Circumstellar Envelopes , 1999 .

[34]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[35]  Frantz Martinache,et al.  KERNEL PHASE IN FIZEAU INTERFEROMETRY , 2010 .

[36]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[37]  Marshall D. Perrin,et al.  Updated optical modeling of JWST coronagraph performance contrast, stability, and strategies , 2018, Astronomical Telescopes + Instrumentation.

[38]  Beth Biller,et al.  A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527 , 2012, 1206.2654.

[39]  Michael J. Ireland,et al.  Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking , 2013 .

[40]  R. Upton,et al.  Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape. , 2004, Optics letters.

[41]  Laird M. Close,et al.  NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T Cha TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED SUBSTELLAR COMPANION , 2015, 1501.01964.

[42]  Steph Sallum,et al.  Data Reduction and Image Reconstruction Techniques for Non-Redundant Masking , 2017 .

[43]  Matthew D. Lallo,et al.  Simulating point spread functions for the James Webb Space Telescope with WebbPSF , 2012, Other Conferences.

[44]  Jarron Leisenring,et al.  First light with ALES: A 2-5 micron adaptive optics Integral Field Spectrograph for the LBT , 2015, SPIE Optical Engineering + Applications.