Crown-of-thorns starfish have true image forming vision

[1]  A. Garm,et al.  Active control of the visual field in the starfish Acanthaster planci , 2016, Vision Research.

[2]  M. Pratchett,et al.  Predation on crown-of-thorns starfish larvae by damselfishes , 2016, Coral Reefs.

[3]  C. Laforsch,et al.  The role of vision for navigation in the crown-of-thorns seastar, Acanthaster planci , 2016, Scientific Reports.

[4]  Anders Garm,et al.  Visual orientation by the crown-of-thorns starfish (Acanthaster planci) , 2016, Coral Reefs.

[5]  P. Flammang,et al.  De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception , 2016, PloS one.

[6]  F. Ruiz-Zepeda,et al.  Calcitic microlens arrays in Archaster typicus: microstructural evidence for an advanced photoreception system in modern starfish , 2016, Zoomorphology.

[7]  Herwig Baier,et al.  Sensorimotor Decision Making in the Zebrafish Tectum , 2015, Current Biology.

[8]  C. McKeon,et al.  Species and size diversity in protective services offered by coral guard-crabs , 2014, PeerJ.

[9]  P. Gorzelak,et al.  Microlens arrays in the complex visual system of Cretaceous echinoderms , 2014, Nature Communications.

[10]  D. Nilsson,et al.  Visual navigation in starfish: first evidence for the use of vision and eyes in starfish , 2014, Proceedings of the Royal Society B: Biological Sciences.

[11]  M. Arnone,et al.  C-opsin expressing photoreceptors in echinoderms. , 2013, Integrative and comparative biology.

[12]  D. Nilsson,et al.  Eye evolution and its functional basis , 2013, Visual Neuroscience.

[13]  G. De’ath,et al.  The 27–year decline of coral cover on the Great Barrier Reef and its causes , 2012, Proceedings of the National Academy of Sciences.

[14]  M. Lesser,et al.  Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6 , 2011, Proceedings of the Royal Society B: Biological Sciences.

[15]  M. Arnone,et al.  Unique system of photoreceptors in sea urchin tube feet , 2011, Proceedings of the National Academy of Sciences.

[16]  Scott C. Burgess,et al.  Disturbance and the Dynamics of Coral Cover on the Great Barrier Reef (1995–2009) , 2011, PloS one.

[17]  M. Berumen,et al.  Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia , 2011, Coral Reefs.

[18]  S. Johnsen,et al.  Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea) , 2010, Journal of Experimental Biology.

[19]  M. Yoshida,et al.  THE PHOTOSENSITIVITY OF THE SEA URCHIN DIADEMA ANTILLARUM PHILIPPI: RESPONSES TO INCREASES IN LIGHT INTENSITY , 2009 .

[20]  R. Whan,et al.  Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes , 2009, Proceedings of the Royal Society B: Biological Sciences.

[21]  Roger T. Hanlon,et al.  Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay , 2006, Vision Research.

[22]  Sönke Johnsen,et al.  Spatial vision in the echinoid genus Echinometra , 2004, Journal of Experimental Biology.

[23]  A. Ward,et al.  Components of phototaxis of the nematode Mermis nigrescens , 1990, Journal of Comparative Physiology A.

[24]  A. H. Jay Burr,et al.  Scanning motion, ocellar morphology and orientation mechanisms in the phototaxis of the nematode Mermis nigrescens , 1990, Journal of Comparative Physiology A.

[25]  M. Byrne,et al.  Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea) , 1987, Zoomorphology.

[26]  R. M. Eakin,et al.  Effects of light on ocelli of seastars , 1979, Zoomorphologie.

[27]  J. Randall,et al.  Food habits of the giant humphead wrasse,Cheilinus undulatus (Labridae) , 1978, Environmental Biology of Fishes.

[28]  M. Yoshida,et al.  Fine Structure of the ocelli of a synaptid holothurian,Opheodesoma spectabilis, and the effects of light and darkness , 1978, Zoomorphologie.

[29]  Serge Andréfouët,et al.  Spectral reflectance of coral , 2004, Coral Reefs.

[30]  Karin Nordström,et al.  A simple visual system without neurons in jellyfish larvae , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  J. Dale Coordination of chemosensory orientation in the starfish asterias forbesi , 1999 .

[32]  Glenn De'ath,et al.  Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef:: 1: Patterns of activity , 1998 .

[33]  Marc J. Weissburg,et al.  Life and Death in Moving Fluids: Hydrodynamic Effects on Chemosensory‐Mediated Predation , 1993 .

[34]  D. B. Dusenbery Sensory Ecology: How Organisms Acquire and Respond to Information , 1992 .

[35]  C. Birkeland,et al.  Acanthaster Planci: Major Management Problem of Coral Reefs , 1990 .

[36]  I. Bodis-Wollner,et al.  Visual contrast sensitivity , 1988, Neurology.

[37]  Peter John. Moran,et al.  The Acanthaster phenomenon , 1988 .

[38]  R. Bradbury Acanthaster and the coral reef : a theoretical perspective : proceedings of a Workshop held at the Australian Institute of Marine Science, Townsville, Aug. 6-7, 1988 , 1988 .

[39]  Gordon Hendler,et al.  Brittlestar Color-Change and Phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). , 1984 .

[40]  N. Sloan The arm curling and terminal tube-foot responses of the asteroid Crossaster papposus (L.) , 1980 .

[41]  R. Burke Podial sensory receptors and the induction of metamorphosis in echinoids , 1980 .

[42]  D. W. Phillips Chemical mediation of invertebrate defensive behaviors and the ability to distinguish between foraging and inactive predators , 1978 .

[43]  M. Walker Food and Feeding Habits of Lethrinus chrysostomus Richardson (Pisces : Perciformes) and Other Lethrinids on the Great Barrier Reef , 1978 .

[44]  Norman Millott,et al.  The Photosensitivity of Echinoids , 1976 .

[45]  N. J. Hanscomb,et al.  Spawning pheromone in crown-of-thorns starfish , 1975, Nature.

[46]  Douglas Fenner THE RESPIRATORY ADAPTATIONS OF THE PODIA AND AMPULLAE OF ECHINOIDS (ECHINODERMATA) , 1973 .

[47]  D. Atwood LARVAL DEVELOPMENT IN THE ASTEROID ECHINASTER ECHINOPHORUS. , 1973, The Biological bulletin.

[48]  J. Ewert Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). , 1970, Brain, behavior and evolution.

[49]  J. Lythgoe Visual pigments and visual range underwater. , 1968, Vision research.

[50]  H. Ohtsuki,et al.  THE PHOTOTACTIC BEHAVIOR OF THE STARFISH, ASTERIAS AMURENSIS LÜTKEN , 1968 .

[51]  H. Ohtsuki,et al.  Compound Ocellus of a Starfish: Its Function , 1966, Science.

[52]  M. Berrill THE ETHOLOGY OF THE SYNAPTID HOLOTHURIAN, OPHEODESOMA SPECTABILIS , 1966 .

[53]  M. Yoshida,et al.  The Shadow Reaction of Diadema Antillarum Philippi : I. The Spine Response and its Relation to the Stimulus , 1960 .

[54]  M. Rockstein Role of the Terminal Pigment Spots of the Starfish, Asterias forbesi, in Light Orientation , 1956, Nature.

[55]  N. Millott The Covering Reaction in a Tropical Sea Urchin , 1955, Nature.

[56]  N. Millott Sensitivity to light and the reactions to changes in light intensity of the Echinoid Diadema Antillarum Philippi , 1954, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  G. A. Kerkut The Mechanisms of Coordination of the Starfish Tube Feet , 1954 .

[58]  G. A. Kerkut The Forces Exerted by the Tube Feet of the Starfish During Locomotion , 1953 .

[59]  J. E. Smith On the Nervous System of the Starfish Marthasterias glacialis (L.) , 1937 .

[60]  V. L. Paine Adhesion of the tube feet in starfishes , 1926 .

[61]  G. Romanes Observations on the Physiology of Echinodermata. , 1883 .

[62]  T. Barrette,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2022 .