Stimulation of angiogenesis using single-pulse low-pressure shock wave treatment

[1]  D. Chakravortty,et al.  Mechanism of transformation in Mycobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen , 2017, Scientific Reports.

[2]  Lewis C. Cantley,et al.  The PI3K Pathway in Human Disease , 2017, Cell.

[3]  A. Loske Medical and Biomedical Applications of Shock Waves , 2016 .

[4]  Kenta Ito,et al.  Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. , 2016, American journal of physiology. Cell physiology.

[5]  Richard A. Strugnell,et al.  Successful treatment of biofilm infections using shock waves combined with antibiotic therapy , 2015, Scientific Reports.

[6]  Ching‐Jen Wang,et al.  Biological mechanism of shockwave in bone. , 2015, International journal of surgery.

[7]  Alberto Avolio,et al.  Mechanical stretch: physiological and pathological implications for human vascular endothelial cells , 2015, Vascular cell.

[8]  P. Carmeliet,et al.  State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. , 2015, Circulation research.

[9]  Doris A Taylor,et al.  Bone marrow characteristics associated with changes in infarct size after STEMI: a biorepository evaluation from the CCTRN TIME trial. , 2015, Circulation research.

[10]  R. Kirchmair,et al.  Low Energy Shock Wave Therapy Induces Angiogenesis in Acute Hind-Limb Ischemia via VEGF Receptor 2 Phosphorylation , 2014, PloS one.

[11]  Ching‐Jen Wang,et al.  Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: implications for angiogenesis and vasculogenesis. , 2013, The Journal of thoracic and cardiovascular surgery.

[12]  A. Ring,et al.  Extracorporeal shock waves improve angiogenesis after full thickness burn. , 2012, Burns : journal of the International Society for Burn Injuries.

[13]  J. Shalhoub,et al.  The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression , 2012, Journal of Vascular Research.

[14]  B. Moretti,et al.  The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. , 2012, Muscles, ligaments and tendons journal.

[15]  A. Maity,et al.  Molecular Neuroscience Review Article , 2011 .

[16]  Laure Gambardella,et al.  A Computational Tool for Quantitative Analysis of Vascular Networks , 2011, PloS one.

[17]  G. Jagadeesh,et al.  Diaphragmless shock wave generators for industrial applications of shock waves , 2011 .

[18]  G. Jagadeesh,et al.  Needleless Vaccine Delivery Using Micro-Shock Waves , 2011, Clinical and Vaccine Immunology.

[19]  E. Elster,et al.  Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: effects of extracorporeal shock wave therapy , 2010, Angiogenesis.

[20]  R. Frairia,et al.  Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-β1 and for collagen types I and III , 2009, Acta orthopaedica.

[21]  K. Birukov,et al.  Cyclic stretch, reactive oxygen species, and vascular remodeling. , 2009, Antioxidants & redox signaling.

[22]  D. Ingber,et al.  TRPV4 Channels Mediate Cyclic Strain–Induced Endothelial Cell Reorientation Through Integrin-to-Integrin Signaling , 2009, Circulation research.

[23]  F. Demirağ,et al.  The effects of shock waves on lung tissue in acute period: an in vivo study , 2007, Urological Research.

[24]  T. Naoe,et al.  Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch* , 2005, Journal of Biological Chemistry.

[25]  B. Sumpio,et al.  Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. , 2005, American journal of physiology. Heart and circulatory physiology.

[26]  Kenji Sunagawa,et al.  Extracorporeal Cardiac Shock Wave Therapy Markedly Ameliorates Ischemia-Induced Myocardial Dysfunction in Pigs in Vivo , 2004, Circulation.

[27]  P. Lacolley Mechanical influence of cyclic stretch on vascular endothelial cells. , 2004, Cardiovascular research.

[28]  Shiranee Pereira,et al.  Animal Experimentation and Ethics in India: The CPCSEA Makes a Difference , 2004, Alternatives to laboratory animals : ATLA.

[29]  M. Matsagas,et al.  Rupture of the abdominal aorta following extracorporeal shock-wave lithotripsy. , 2003, The European journal of surgery = Acta chirurgica.

[30]  K. Fujiwara,et al.  Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction , 2002, The Journal of cell biology.

[31]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[32]  H. Lehr,et al.  Generation of Human Pulmonary Microvascular Endothelial Cell Lines , 2001, Laboratory Investigation.

[33]  Y. Jan,et al.  Common bile duct and pancreatic injury after extracorporeal shock wave lithotripsy for renal stone. , 2000, Hepato-gastroenterology.

[34]  C. Bernstein,et al.  Case Report: Extracorporeal Shock Wave Lithotripsy Causing Colonic Injury , 1999, Digestive Diseases and Sciences.

[35]  B. Sumpio,et al.  Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. , 1999, Biochemical and biophysical research communications.

[36]  Takako Yamada,et al.  Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. , 1998, American journal of physiology. Heart and circulatory physiology.

[37]  J. Price,et al.  Small bowel perforation after extracorporeal shock wave lithotripsy. , 1997, British journal of urology.

[38]  M. Moran,et al.  Injury of rat renal vessels following extracorporeal shock wave treatment. , 1992, The Journal of urology.

[39]  K Remberger,et al.  Biological effects of shock waves: lung hemorrhage by shock waves in dogs--pressure dependence. , 1987, Ultrasound in medicine & biology.

[40]  E. Schmiedt,et al.  EXTRACORPOREALLY INDUCED DESTRUCTION OF KIDNEY STONES BY SHOCK WAVES , 1980, The Lancet.

[41]  K. P. J. Reddy,et al.  Manually operated piston-driven shock tube , 2013 .