Complementary co-kriging: spatial prediction using data combined from several environmental monitoring networks

We consider the problem of optimal spatial prediction of an environmental variable using data from more than one sampling network. A model incorporating spatial dependence and measurement errors with network-specific biases and variances serves as the basis for the analysis of the combined data from all networks. We develop the associated optimal prediction methodology, which we call complementary co-kriging because (a) data from each network complements the other, and (b) the solutions to several prediction problems of interest are co-kriging predictors. A hypothetical example illustrates how much better the complementary co-kriging predictor can be, when compared to the ordinary kriging predictors from each network alone and to a ‘naive’ combined predictor. We use the methodology to obtain optimal predictions of wet nitrate concentration data over the eastern U.S. using data combined from the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and the Clean Air Status and Trends Network (CASTNet). Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Donald E. Myers,et al.  Co-Kriging — New Developments , 1984 .

[2]  Incorporating parameter uncertainty into prediction intervals for spatial data modeled via a parametric variogram , 2003 .

[3]  Noel A Cressie,et al.  Spatial modelling of snow water equivalent using airborne and ground- based snow data , 1995 .

[4]  N. Cressie,et al.  Mean squared prediction error in the spatial linear model with estimated covariance parameters , 1992 .

[5]  N. Cressie,et al.  Universal cokriging under intrinsic coregionalization , 1994 .

[6]  Ronald Christensen,et al.  Tests for Precision and Accuracy of Multiple Measuring Devices , 1993 .

[7]  Markus Abt Estimating the Prediction Mean Squared Error in Gaussian Stochastic Processes with Exponential Correlation Structure , 1999 .

[8]  J. F. Clarke,et al.  A multilayer model for inferring dry deposition using standard meteorological measurements , 1998 .

[9]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[10]  David M. Holland,et al.  Spatial Prediction of Sulfur Dioxide in the Eastern United States , 1999 .

[11]  Dale L. Zimmerman,et al.  Combining Temporally Correlated Environmental Data From Two Measurement Systems , 2000 .

[12]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[13]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[14]  T. C. Haas,et al.  Local Prediction of a Spatio-Temporal Process with an Application to Wet Sulfate Deposition , 1995 .

[15]  G. Oehlert,et al.  Regional Trends in Sulfate Wet Deposition , 1993 .

[16]  Frank E. Grubbs,et al.  On Estimating Precision of Measuring Instruments and Product Variability , 1948 .

[17]  Noel A Cressie Spatial prediction in a multivariate setting , 1993 .

[18]  A. Raftery,et al.  Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical Models via Bayesian Melding , 2001 .

[19]  David M. Holland,et al.  Estimation of regional trends in sulfur dioxide over the eastern United States , 2000 .

[20]  Mary Kathryn Cowles,et al.  A Bayesian space‐time analysis of acid deposition data combined from two monitoring networks , 2003 .

[21]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[22]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .