Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System

Social tagging is one of the vital attributes of WEB2.0. The challenge of Web 2.0 is a gigantic measure of information created over a brief time. Tags are broadly used to interpret and arrange the web 2.0 assets. Tag clustering is the procedure of grouping the comparable tags into clusters. The tag clustering is extremely valuable for researching and organizing the web2. 0 resources furthermore critical for the achievement of Social Bookmarking frameworks. In this paper, the authors proposed a hybrid Tolerance Rough Set Based Firefly TRS-Firefly-K-Means clustering algorithm for clustering tags in social systems. At that stage, the proposed system is contrasted with the benchmark algorithm K-Means clustering and Particle Swarm optimization PSO based Clustering technique. The experimental analysis outlines the viability of the suggested methodology.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Tu Bao Ho,et al.  Nonhierarchical document clustering based on a tolerance rough set model , 2002, Int. J. Intell. Syst..

[3]  Supriya Kumar De,et al.  Clustering web transactions using rough approximation , 2004, Fuzzy Sets Syst..

[4]  Jianwen Ma,et al.  Remote sensing data classification using tolerant rough set and neural networks , 2005 .

[5]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[6]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[7]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[8]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[9]  K. Thangavel,et al.  Mining and Analysis of Clickstream Patterns , 2009, Foundations of Computational Intelligence.

[10]  Taher Niknam,et al.  An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis , 2010, Appl. Soft Comput..

[11]  Rui Li,et al.  Survey on social tagging techniques , 2010, SKDD.

[12]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[13]  Davide Eynard,et al.  An integrated approach to discover tag semantics , 2011, SAC.

[14]  Yu Zong,et al.  On Kernel Information Propagation for Tag Clustering in Social Annotation Systems , 2011, KES.

[15]  Thangavel,et al.  Unsupervised Quick Reduct Algorithm Using Rough Set Theory , 2011 .

[16]  Xiaohua Hu,et al.  Exploiting the Social Tagging Network for Web Clustering , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[17]  R. J. Kuo,et al.  An application of particle swarm optimization algorithm to clustering analysis , 2011, Soft Comput..

[18]  S. Appavu alias Balamurugan,et al.  A novel feature selection framework for automatic web page classification , 2012, Int. J. Autom. Comput..

[19]  Mehdi Sargolzaei,et al.  A New Cooperative Algorithm Based on PSO and K-Means for Data Clustering , 2012 .

[20]  H. Hannah Inbarani,et al.  Soft Set Based Feature Selection Approach for Lung Cancer Images , 2012, ArXiv.

[21]  Verónica Bolón-Canedo,et al.  A review of feature selection methods on synthetic data , 2013, Knowledge and Information Systems.

[22]  Nishu Sharma,et al.  A Comparative Study Of Data Clustering Techniques , 2013 .

[23]  Ahmad Taher Azar,et al.  PSORR - An unsupervised feature selection technique for fetal heart rate , 2013, 2013 5th International Conference on Modelling, Identification and Control (ICMIC).

[24]  H. H. Inbarani,et al.  Web 2.0 social bookmark selection for tag clustering , 2013, 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering.

[25]  Ahmad Taher Azar,et al.  Hybrid Tolerance Rough Set: PSO Based Supervised Feature Selection for Digital Mammogram Images , 2013, Int. J. Fuzzy Syst. Appl..

[26]  H. Hannah Inbarani,et al.  Analysis of mixed C-means clustering approach for brain tumour gene expression data , 2013, Int. J. Data Anal. Tech. Strateg..

[27]  Richard Jensen,et al.  Unsupervised fuzzy-rough set-based dimensionality reduction , 2013, Inf. Sci..

[28]  Stan Matwin,et al.  A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data , 2013, Artificial Intelligence Review.

[29]  Ahmad Taher Azar,et al.  Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis , 2014, Comput. Methods Programs Biomed..

[30]  Aboul Ella Hassanien,et al.  Dimensionality reduction of medical big data using neural-fuzzy classifier , 2014, Soft Computing.