Combinatorics of binomial primary decomposition

An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables.

[1]  S. A. Sherman,et al.  Providence , 1906 .

[2]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[3]  Alicia Dickenstein,et al.  Counting solutions to binomial complete intersections , 2005, J. Complex..

[4]  B. Sturmfels,et al.  Grbner Deformations of Hypergeometric Differential Equations , 2000 .

[5]  M. Graev Equations and series of hypergeometric type , 1995 .

[6]  Rekha R. Thomas,et al.  The circuit ideal of a vector configuration , 2005, math/0508628.

[7]  Alicia Dickenstein,et al.  Binomial D-modules , 2006, math/0610353.

[8]  Klaus G. Fischer,et al.  Mixed matrices and binomial ideals , 1996 .

[9]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[10]  Ignacio Ojeda Martínez de Castilla,et al.  Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals , 2000, J. Symb. Comput..

[11]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[12]  Alicia Dickenstein,et al.  Bivariate hypergeometric D-modules , 2003 .

[13]  H. Grosser Chicago , 1906 .

[14]  R. Gilmer,et al.  Commutative Semigroup Rings , 1984 .

[15]  Ezra Miller,et al.  Homological methods for hypergeometric families , 2004, math/0406383.

[16]  Serkan Hosten,et al.  Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..

[17]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[18]  Ezra Miller Cohen-Macaulay quotients of normal semigroup rings via irreducible resolutions , 2001 .