Beyond-CMOS Device Benchmarking for Boolean and Non-Boolean Logic Applications

The latest results of benchmarking research are presented for a variety of beyond-CMOS charge- and spin-based devices. In addition to improving the device-level models, several new device proposals and a few majorly modified devices are investigated. Deep pipelining circuits are employed to boost the throughput of low-power devices. Furthermore, the benchmarking methodology is extended to interconnect-centric analyses and non-Boolean logic applications. In contrast to Boolean circuits, non-Boolean circuits based on the cellular neural network demonstrate that spintronic devices can potentially outperform conventional CMOS devices.

[1]  Mingda Li,et al.  Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[2]  Andrew Marshall,et al.  Magneto-electric magnetic tunnel junction logic devices , 2015, 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S).

[3]  A. Naeemi,et al.  A Model Study of an Error-Free Magnetization Reversal Through Dipolar Coupling in a Two-Magnet System , 2016, IEEE Transactions on Magnetics.

[4]  Supriyo Datta,et al.  Non-volatile spin switch for Boolean and non-Boolean logic , 2012 .

[5]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[6]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[7]  Azad Naeemi,et al.  Interconnect Design and Benchmarking for Charge-Based Beyond-CMOS Device Proposals , 2016, IEEE Electron Device Letters.

[8]  A. Seabaugh,et al.  Steep subthreshold swing tunnel FETs: GaN/InN/GaN and transition metal dichalcogenide channels , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[9]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[10]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[11]  Chenming Hu,et al.  Sub-60mV-swing negative-capacitance FinFET without hysteresis , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[12]  Kaushik Roy,et al.  SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromorphic computing , 2014, 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[13]  H. Samueli,et al.  A 200 MHz CMOS pipelined multiplier-accumulator using a quasi-domino dynamic full-adder cell design , 1993 .

[14]  Andrew Marshall,et al.  Compact-device model development for the energy-delay analysis of magneto-electric magnetic tunnel junction structures , 2016 .

[15]  Azad Naeemi,et al.  Performance analyses and benchmarking for spintronic devices and interconnects , 2016, 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC).

[16]  Indranil Palit,et al.  TFET-based cellular neural network architectures , 2013, International Symposium on Low Power Electronics and Design (ISLPED).

[17]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[18]  Saibal Mukhopadhyay,et al.  Potential of Ultralow-Power Cellular Neural Image Processing With Si/Ge Tunnel FET , 2014, IEEE Transactions on Nanotechnology.

[19]  Dharmendar Reddy,et al.  From Coherent States in Adjacent Graphene Layers toward Low-Power Logic Circuits , 2011 .

[20]  Azad Naeemi,et al.  Non-Boolean Computing Benchmarking for Beyond-CMOS Devices Based on Cellular Neural Network , 2016, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[21]  Gerhard Klimeck,et al.  Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[22]  Noel Menezes,et al.  Repeater scaling and its impact on CAD , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  J. Nowak,et al.  Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions , 2011 .

[24]  Doug Matzke,et al.  Will Physical Scalability Sabotage Performance Gains? , 1997, Computer.

[25]  Supriyo Datta,et al.  Spin Funneling for Enhanced Spin Injection into Ferromagnets , 2016, Scientific Reports.

[26]  D. E. Nikonov,et al.  Uniform methodology for benchmarking beyond-CMOS logic devices , 2012, 2012 International Electron Devices Meeting.

[27]  Asif Islam Khan,et al.  Negative Capacitance in Short-Channel FinFETs Externally Connected to an Epitaxial Ferroelectric Capacitor , 2016, IEEE Electron Device Letters.

[28]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[29]  G. Klimeck,et al.  NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool , 2011, IEEE Transactions on Nanotechnology.

[30]  Azad Naeemi,et al.  Impact of spintronics transducers on the performance of spin wave logic circuit , 2016, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).

[31]  Chenyun Pan,et al.  A Paradigm Shift in Local Interconnect Technology Design in the Era of Nanoscale Multigate and Gate-All-Around Devices , 2015, IEEE Electron Device Letters.

[32]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[33]  D. Esseni,et al.  Two-Dimensional Heterojunction Interlayer Tunneling Field Effect Transistors (Thin-TFETs) , 2015, IEEE Journal of the Electron Devices Society.

[34]  Azad Naeemi,et al.  A Proposal for Energy-Efficient Cellular Neural Network Based on Spintronic Devices , 2016, IEEE Transactions on Nanotechnology.

[35]  Azad Naeemi,et al.  Impact of Dimensional Scaling and Size Effects on Spin Transport in Copper and Aluminum Interconnects , 2013, IEEE Transactions on Electron Devices.

[36]  Khairul Alam,et al.  Uniform Benchmarking of Low-Voltage van der Waals FETs , 2016, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[37]  Andrew Marshall,et al.  Magneto-electric magnetic tunnel junction as process adder for non-volatile memory applications , 2015, 2015 IEEE Dallas Circuits and Systems Conference (DCAS).

[38]  C. Binek,et al.  Magnetoelectronics with magnetoelectrics , 2005 .

[39]  Sachin S. Sapatnekar,et al.  CoMET: Composite-Input Magnetoelectric- Based Logic Technology , 2016, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[40]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[41]  Xuehao Mou,et al.  Quantum transport simulation of exciton condensate transport physics in a double-layer graphene system , 2015 .

[42]  Kaushik Roy,et al.  Spin Orbit Torque Based Electronic Neuron , 2014, ArXiv.

[43]  Azad Naeemi,et al.  Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization , 2015 .

[44]  Azad Naeemi,et al.  Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines , 2015, Scientific Reports.

[45]  Uri C. Weiser,et al.  Interconnect-power dissipation in a microprocessor , 2004, SLIP '04.

[46]  Qiuwen Lou,et al.  Cellular neural network friendly convolutional neural networks — CNNs with CNNs , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[47]  Chenming Hu,et al.  Compact models of negative-capacitance FinFETs: Lumped and distributed charge models , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[48]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[49]  Shaowen Chen,et al.  Electron optics with p-n junctions in ballistic graphene , 2016, Science.

[50]  Lawrence T. Pileggi,et al.  mLogic: Ultra-low voltage non-volatile logic circuits using STT-MTJ devices , 2012, DAC Design Automation Conference 2012.