Order parameters for minimax entropy distributions: when does high level knowledge help?
暂无分享,去创建一个
[1] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[2] Alan L. Yuille,et al. Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Song-Chun Zhu,et al. Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[4] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .
[5] Alan L. Yuille,et al. Bayesian A* Tree Search with Expected O(N) Convergence Rates for Road Tracking , 1999, EMMCVPR.
[6] Alan L. Yuille,et al. High-level and generic models for visual search: When does high level knowledge help? , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).
[7] Daniel Snow,et al. Efficient optimization of a deformable template using dynamic programming , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).
[8] Ana Wu,et al. Equivalence of Ensembles and Fundamental Bounds - A Unified Theory of Texture Modeling and Analysis , 1999 .
[9] Donald Geman,et al. An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[10] John T. Lewis,et al. Entropy, concentration of probability and conditional limit theorems , 1995 .
[11] Bart Selman,et al. Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..
[12] John K. Tsotsos. Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.
[13] Song-Chun Zhu,et al. Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..