Hybrid Synchronization of n-scroll Chaotic Chua Circuits using Adaptive Backstepping Control Design with Recursive Feedback

In this paper, the hybrid synchronization is investigated for n-scroll chaotic Chua circuit (Wallace et al. (2001)) using adaptive backstepping control design based on recursive feedback control. Our theorems on hybrid synchronization for n-scroll chaotic Chua circuits are established using Lyapunov stability theory. The adaptive backstepping control links the choice of Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. The adaptive backstepping control maintains the parameter vector at a predetermined desired value. The adaptive backstepping control method is effective and convenient to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique gives the flexibility to construct a control law and estimate the parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.

[1]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[2]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[3]  Ju H. Park Letter to the Editor: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters , 2008 .

[4]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  Jian-ping Yan,et al.  Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system , 2006 .

[6]  L. Chua,et al.  Generalized synchronization of chaos via linear transformations , 1999 .

[7]  Sundarapandian Vaidyanathan,et al.  Generalized Projective Synchronization of Three-Scroll Chaotic Systems via Active Control , 2012 .

[8]  S. M. Lee,et al.  Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control , 2007 .

[9]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[10]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[11]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[12]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[13]  Rui-hong Li,et al.  A special full-state hybrid projective synchronization in symmetrical chaotic systems , 2008, Appl. Math. Comput..

[14]  F. M. Kakmeni,et al.  CHAOS SYNCHRONIZATION IN BI-AXIAL MAGNETS MODELED BY BLOCH EQUATION , 2006 .

[15]  Q. Jia Projective synchronization of a new hyperchaotic Lorenz system , 2007 .

[16]  Bin Deng,et al.  Synchronization of Ghostburster neuron in external electrical stimulation via H∞ variable universe fuzzy adaptive control , 2009 .

[17]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[18]  Wei Xu,et al.  Adaptive generalized projective synchronization in different chaotic systems based on parameter identification , 2007 .

[19]  Z. Ge,et al.  Phase synchronization of coupled chaotic multiple time scales systems , 2004 .

[20]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[21]  Zuolei Wang Chaos synchronization of an energy resource system based on linear control , 2010 .

[22]  Sundarapandian Vaidyanathan,et al.  Generalized Projective Synchronization of Double-Scroll Chaotic Systems Using Active Feedback Control , 2012 .

[23]  J. Suykens,et al.  Nonlinear H∞ Synchronization of Chaotic Lur'e Systems , 1997 .

[24]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[25]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  M. Lakshmanan,et al.  SECURE COMMUNICATION USING A COMPOUND SIGNAL USING SAMPLED-DATA FEEDBACK , 2003 .

[27]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[28]  Z. Guan,et al.  Generalized synchronization of continuous chaotic system , 2006 .

[29]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[30]  Parlitz,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical Review Letters.

[31]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[32]  Morton Nadler,et al.  The stability of motion , 1961 .

[33]  V. Sundarapandian,et al.  Global Chaos Synchronization of the Pehlivan Systems by Sliding Mode Control , 2011 .

[34]  Lixin Tian,et al.  Global synchronization for time-delay of WINDMI System , 2006 .

[35]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[36]  Jiang Wang,et al.  Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control , 2010 .

[37]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[38]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[39]  Sundarapandian Vaidyanathan,et al.  New Results on the Global Chaos Synchronization for Liu-Chen-Liu and Lü Chaotic Systems , 2010 .

[40]  Lansun Chen,et al.  Complexity of an SIR epidemic dynamics model with impulsive vaccination control , 2005 .

[41]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[42]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[43]  Sundarapandian Vaidyanathan,et al.  Hybrid Synchronization of Arneodo and Rössler Chaotic Systems by Active Nonlinear Control , 2012 .