Optimal Interfacial Model between the Alloy Surface and Electrolyte Solvation Structure for a Stable Lithium Metal Electrode

[1]  E. Xie,et al.  Interfacial and Interphasial Chemistry of Electrolyte Components to Invoke High‐Performance Antimony Anodes and Non‐Flammable Lithium‐Ion Batteries , 2022, Advanced Functional Materials.

[2]  Xiulin Fan,et al.  Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries , 2022, Chem.

[3]  Jiaqi Huang,et al.  Thermally Stable Polymer-Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. , 2022, Angewandte Chemie.

[4]  E. Xie,et al.  Discerning Roles of Interfacial Model and Solid Electrolyte Interphase Layer for Stabilizing Antimony Anode in Lithium-Ion Batteries , 2022, ACS Materials Letters.

[5]  E. Xie,et al.  Dipole–Dipole Interaction Induced Electrolyte Interfacial Model To Stabilize Antimony Anode for High-Safety Lithium-Ion Batteries , 2022, ACS Energy Letters.

[6]  Huolin L. Xin,et al.  Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility. , 2022, Nano letters.

[7]  Jeong‐Hee Choi,et al.  One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. , 2022, ACS nano.

[8]  Xin-Bing Cheng,et al.  Dendrite‐accelerated thermal runaway mechanisms of lithium metal pouch batteries , 2022, SusMat.

[9]  Xiaodi Ren,et al.  Stabilizing Lithiophilic Sites Via Bimetallic Oxide Heterointerfaces , 2022, Advanced Materials Interfaces.

[10]  Xin-Bing Cheng,et al.  Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries , 2022, Journal of Energy Chemistry.

[11]  Jun Lu,et al.  Ultrafast Metal Electrodeposition Revealed by in‐situ Optical Imaging and Theoretical Modeling towards Fast‐charging Zn Battery Chemistry , 2022, Angewandte Chemie.

[12]  Zhe Peng,et al.  Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes. , 2022, ACS applied materials & interfaces.

[13]  Ziqiang Liu,et al.  Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio , 2022, Energy Materials.

[14]  Nian Liu,et al.  Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries , 2021 .

[15]  Hongkyung Lee,et al.  Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries , 2020, Proceedings of the National Academy of Sciences.

[16]  M. Armand,et al.  Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries , 2020, Nature Communications.

[17]  Xiaobo Ji,et al.  Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation , 2020 .

[18]  L. Wan,et al.  Solid-solution based metal alloy phase for highly reversible lithium metal anode. , 2020, Journal of the American Chemical Society.

[19]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[20]  Adelaide M. Nolan,et al.  The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium , 2020, Joule.

[21]  Xiulin Fan,et al.  Countersolvent Electrolytes for Lithium‐Metal Batteries , 2020, Advanced Energy Materials.

[22]  Yong Cheng,et al.  Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries , 2020 .

[23]  Jun Lu,et al.  Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries , 2020, ACS Energy Letters.

[24]  B. Liu,et al.  Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase , 2019, Advanced Energy Materials.

[25]  Hongkyung Lee,et al.  Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions , 2019, Joule.

[26]  Hao Zhang,et al.  Chemical Energy Release Driven Lithiophilic Layer on 1 m2 Commercial Brass Mesh toward Highly Stable Lithium Metal Batteries. , 2019, Nano letters.

[27]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[28]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[29]  Lin Liu,et al.  Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen‐Doped Graphitic Carbon Foams for High‐Performance Lithium Metal Anodes , 2018, Advanced materials.

[30]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[31]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[32]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[33]  Meng Liu,et al.  Li2O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode. , 2016, ACS applied materials & interfaces.

[34]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[35]  O. Borodin,et al.  In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI‐Based Organic Electrolytes , 2015 .