Interactive Chebyshev-Legendre Algorithm for Linear Quadratic Optimal regulator Systems

In this paper, we derive an algorithm to solve the linear quadratic (LQ) optimal regulator problems. The new approach is based on efficient Legendre and Chebyshev formulae at the Chebyshev–Gauss–Lobatto points. The technique enjoys advantages of both the Legendre and Chebyshev approximations near the end points. To show the numerical behavior of the proposed method, the simulation results of an example are presented.

[1]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[2]  Martin Weiser,et al.  Inexact Central Path Following Algorithms for Optimal Control Problems , 2007, SIAM J. Control. Optim..

[3]  Biswajit Basu,et al.  A wavelet-based time-varying adaptive LQR algorithm for structural control , 2008 .

[4]  Hamid Reza Karimi,et al.  Wavelet-Based Parameter Identification of a Nonlinear Magnetorheological Damper , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[5]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[6]  Martin Weiser,et al.  A control reduced primal interior point method for a class of control constrained optimal control problems , 2008, Comput. Optim. Appl..

[7]  A. Leizarowitz,et al.  Infinite-Horizon Discrete-Time Optimal Control Problems , 2003 .

[8]  Alberto Bemporad,et al.  Corrigendum to: "The explicit linear quadratic regulator for constrained systems" [Automatica 38(1) (2002) 3-20] , 2003, Autom..

[9]  Manfred Morari,et al.  LQ control for constrained continuous-time systems , 2002, Autom..

[10]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[11]  I. B. Jacques Extended one-step methods for the numerical solution of ordinary differential equations , 1989 .

[12]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[13]  A. A. Salama Numerical methods based on extended one-step methods for solving optimal control problems , 2006, Appl. Math. Comput..

[14]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[16]  Dirk A. Lorenz,et al.  An Optimal Control Problem in Medical Image Processing , 2005, Systems, Control, Modeling and Optimization.

[17]  Mamdouh M. El-Kady,et al.  Ultraspherical Differentiation Method for Solving System of Initial Value Differential Algebraic Equations , 2009, Comput. Methods Appl. Math..

[18]  Hussein Jaddu,et al.  Spectral method for constrained linear-quadratic optimal control , 2002, Math. Comput. Simul..