Discrete Quantum Walks Hit Exponentially Faster

This paper addresses the question: what processes take polynomial time on a quantum computer that require exponential time classically? We show that the hitting time of the discrete time quantum random walk on the n-bit hypercube from one corner to its opposite is polynomial in n. This gives the first exponential quantum-classical gap in the hitting time of discrete quantum walks. We provide the basic framework for quantum hitting time and give two alternative definitions to set the ground for its study on general graphs. We outline a possible application to sequential packet routing.

[1]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[2]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[3]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[4]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[5]  Hiroshi Imai,et al.  Analysis of absorbing times of quantum walks , 2003 .

[6]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[7]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[8]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[9]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[10]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[12]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[13]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[14]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[15]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[16]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[21]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[22]  Alexander Russell,et al.  Quantum Walks on the Hypercube , 2002, RANDOM.

[23]  Hiroshi Imai,et al.  An Analysis of Absorbing Times of Quantum Walks , 2002, UMC.

[24]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[25]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.