Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

[1]  A. Jacobson,et al.  Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2 , 2022, Communications Earth & Environment.

[2]  M. Petrizzo,et al.  Enhanced hydrological cycle during Oceanic Anoxic Event 2 at southern high latitudes: New insights from IODP Site U1516 , 2022, Global and Planetary Change.

[3]  Zhonghui Liu,et al.  Enhanced ocean connectivity and volcanism instigated global onset of Cretaceous Oceanic Anoxic Event 2 (OAE2) ∼94.5 million years ago , 2022, Earth and Planetary Science Letters.

[4]  M. Petrizzo,et al.  Exploring the paleoceanographic changes registered by planktonic foraminifera across the Cenomanian-Turonian boundary interval and Oceanic Anoxic Event 2 at southern high latitudes in the Mentelle Basin (SE Indian Ocean) , 2021 .

[5]  J. Curtis,et al.  Assessing the contribution of the La Luna Sea to the global sink of organic carbon during the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) , 2021 .

[6]  C. Holmden,et al.  Changing inputs of continental and submarine weathering sources of Sr to the oceans during OAE 2 , 2021, Geochimica et Cosmochimica Acta.

[7]  M. Petrizzo,et al.  Early Cretaceous subsidence of the Naturaliste Plateau defined by a new record of volcaniclastic-rich sequence at IODP Site U1513 , 2020, Gondwana Research.

[8]  S. Wright,et al.  High resolution osmium data record three distinct pulses of magmatic activity during cretaceous Oceanic Anoxic Event 2 (OAE-2) , 2020 .

[9]  R. Zeebe,et al.  History of carbonate ion concentration over the last 100 million years II: Revised calculations and new data , 2019, Geochimica et Cosmochimica Acta.

[10]  D. Selby,et al.  Influence of the High Arctic Igneous Province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, High Canadian Arctic , 2019, Earth and Planetary Science Letters.

[11]  S. Self,et al.  The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary , 2019, Science.

[12]  J. Middelburg,et al.  The role of calcification in carbonate compensation , 2018, Nature Geoscience.

[13]  B. Arbic,et al.  Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2 , 2018, Proceedings of the National Academy of Sciences.

[14]  S. Flögel,et al.  New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco , 2018 .

[15]  S. Nielsen,et al.  Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma) , 2017, Science Advances.

[16]  A. Turchyn,et al.  Remobilization of crustal carbon may dominate volcanic arc emissions , 2017, Science.

[17]  R. Zeebe,et al.  Quantifying the volcanic emissions which triggered Oceanic Anoxic Event 1a and their effect on ocean acidification , 2017 .

[18]  R. Pancost,et al.  A Southern Hemisphere record of global trace‐metal drawdown and orbital modulation of organic‐matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau) , 2017 .

[19]  R. Pancost,et al.  Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a , 2016 .

[20]  H. Nishi,et al.  Pacific 187 Os/ 188 Os isotope chemistry and U-Pb geochronology: Synchroneity of global Os isotope change across OAE 2 , 2015 .

[21]  A. Jacobson,et al.  Ca isotope stratigraphy across the Cenomanian–Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor , 2015 .

[22]  K. Farley,et al.  Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum , 2014 .

[23]  B. Sageman,et al.  Cenomanian To Campanian Carbon Isotope Chemostratigraphy from the Western Interior Basin, U.S.A , 2014 .

[24]  I. Jarvis,et al.  Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2 , 2014 .

[25]  A. Sluijs,et al.  A middle Eocene carbon cycle conundrum , 2013 .

[26]  A. A. Tantawy,et al.  The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet , 2013 .

[27]  D. P. Murphy,et al.  A Cenozoic record of the equatorial Pacific carbonate compensation depth , 2012, Nature.

[28]  D. Bottjer,et al.  Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary , 2012 .

[29]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.

[30]  J. Mutterlose,et al.  Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic , 2011 .

[31]  E. Erba,et al.  Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a , 2010, Science.

[32]  A. Paytan,et al.  Calcium isotope constraints on the end-Permian mass extinction , 2010, Proceedings of the National Academy of Sciences.

[33]  Stefan Schouten,et al.  A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2 , 2010 .

[34]  P. Meyers,et al.  Origins and maturity of organic matter in mid-Cretaceous black shales from ODP Site 1138 on the Kerguelen Plateau , 2009 .

[35]  M. Böttcher,et al.  Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207) , 2009 .

[36]  T. Yamanaka,et al.  Litho-, bio- and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France , 2009 .

[37]  R. Duncan,et al.  C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water platform carbonates of southern Mexico , 2009 .

[38]  M. Petrizzo,et al.  The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A , 2008 .

[39]  M. Wagreich,et al.  Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria) , 2008 .

[40]  S. Turgeon,et al.  Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode , 2008, Nature.

[41]  F. Rodríguez-Tovar,et al.  Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): An example from the Barnasiówka section, Polish Outer Carpathians , 2008 .

[42]  H. Tokuyama,et al.  Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2 , 2007 .

[43]  A. Gale,et al.  Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis , 2006 .

[44]  H. Brumsack,et al.  Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy , 2006 .

[45]  A. Bellanca,et al.  Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria–Marche Apennines) and from an equivalent section in NW Sicily: Consistent and contrasting responses to the OAE2 , 2006 .

[46]  H. Brumsack The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation , 2006 .

[47]  T. Bralower,et al.  Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA , 2005 .

[48]  J. Zachos,et al.  Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum , 2005, Science.

[49]  R. Coccioni,et al.  PLANKTONIC FORAMINIFERA AND ENVIRONMENTAL CHANGES ACROSS THE BONARELLI EVENT (OAE2, LATEST CENOMANIAN) IN ITS TYPE AREA: A HIGH-RESOLUTION STUDY FROM THE TETHYAN REFERENCE BOTTACCIONE SECTION (GUBBIO, CENTRAL ITALY) , 2004 .

[50]  B. Peucker‐Ehrenbrink,et al.  The marine osmium isotope record , 2000 .

[51]  A. Nederbragt,et al.  Stratigraphy and palaeoceanography of the Cenomanian-Turonian Boundary Event in Oued Mellegue, north-western Tunisia , 1999 .

[52]  A. Kerr Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? , 1998, Journal of the Geological Society.

[53]  J. Morgan,et al.  Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.

[54]  C. Müller,et al.  Ocean-wide stagnation episode in the late Cretaceous , 1984, Nature.

[55]  P. Vogt,et al.  Initial Reports of the Deep Sea Drilling Project, 43 , 1979 .