暂无分享,去创建一个
Ying Yang | Shi Shu | Ruigang Shen | Mingjuan Fang | S. Shu | Ying Yang | Ruigang Shen | Mingjuan Fang
[1] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[2] Chun Liu,et al. An energetic variational approach to ion channel dynamics , 2014 .
[3] Pengtao Sun,et al. Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system , 2017 .
[4] Kejia Pan,et al. An energy preserving finite difference scheme for the Poisson-Nernst-Planck system , 2015, Appl. Math. Comput..
[5] Zhimin Zhang. A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..
[6] Pengtao Sun,et al. Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling , 2018, J. Comput. Appl. Math..
[7] Chun Liu,et al. PNP equations with steric effects: a model of ion flow through channels. , 2012, The journal of physical chemistry. B.
[8] Ya-Zhe Chen,et al. Second Order Elliptic Equations and Elliptic Systems , 1998 .
[9] Andrei D. Polyanin,et al. Partial differential equation , 2008, Scholarpedia.
[10] Amit Singer,et al. A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..
[11] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[12] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[13] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[14] Michael J. Holst,et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..
[15] P. M. Biesheuvel,et al. Diffuse-charge effects on the transient response of electrochemical cells. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Jinchao Xu,et al. Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..
[17] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[18] W. Nernst,et al. Die elektromotorische Wirksamkeit der Jonen , 1889 .
[19] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[20] M. Bazant,et al. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.
[21] G. Burton. Sobolev Spaces , 2013 .
[22] Claire Chainais-Hillairet,et al. Study of a Finite Volume Scheme for the Drift-Diffusion System. Asymptotic Behavior in the Quasi-Neutral Limit , 2013, SIAM J. Numer. Anal..
[23] Aihui Zhou,et al. Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation , 2006 .
[24] John R. King,et al. Time-dependent modelling and asymptotic analysis of electrochemical cells , 2007 .
[25] Bob Eisenberg,et al. A conservative finite difference scheme for Poisson–Nernst–Planck equations , 2013, Journal of Computational Electronics.
[26] Hailiang Liu,et al. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..
[27] Bin Zheng,et al. Error analysis of finite element method for Poisson-Nernst-Planck equations , 2016, J. Comput. Appl. Math..
[28] R. Verfürth. A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .
[29] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[30] Benzhuo Lu,et al. A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations , 2018, Numerical Algorithms.
[31] M. Kurnikova,et al. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.
[32] Claire Chainais-Hillairet,et al. FINITE VOLUME APPROXIMATION FOR DEGENERATE DRIFT-DIFFUSION SYSTEM IN SEVERAL SPACE DIMENSIONS , 2004 .
[33] M. Planck,et al. Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .
[34] Benzhuo Lu,et al. An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations , 2013 .
[35] Ningning Yan,et al. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .
[36] D. Shi,et al. Superconvergence analysis of finite element method for Poisson–Nernst–Planck equations , 2019, Numerical Methods for Partial Differential Equations.
[37] Y. C. Zhou,et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. , 2011, Biophysical journal.
[38] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[39] Huadong Gao,et al. Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations , 2017, J. Sci. Comput..
[40] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[41] Benzhuo Lu,et al. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.
[42] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems , 1994 .