Local Averaging Type a Posteriori Error Estimates for the Nonlinear Steady-state Poisson-Nernst-Planck Equations

The a posteriori error estimates are studied for a class of nonlinear stead-state Poisson-Nernst-Planck equations, which are a coupled system consisting of the Nernst-Planck equation and the Poisson equation. Both the global upper bounds and the local lower bounds of the error estimators are obtained by using a local averaging operator. Numerical experiments are given to confirm the reliability and efficiency of the error estimators.

[1]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[2]  Chun Liu,et al.  An energetic variational approach to ion channel dynamics , 2014 .

[3]  Pengtao Sun,et al.  Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system , 2017 .

[4]  Kejia Pan,et al.  An energy preserving finite difference scheme for the Poisson-Nernst-Planck system , 2015, Appl. Math. Comput..

[5]  Zhimin Zhang A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..

[6]  Pengtao Sun,et al.  Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling , 2018, J. Comput. Appl. Math..

[7]  Chun Liu,et al.  PNP equations with steric effects: a model of ion flow through channels. , 2012, The journal of physical chemistry. B.

[8]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[9]  Andrei D. Polyanin,et al.  Partial differential equation , 2008, Scholarpedia.

[10]  Amit Singer,et al.  A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..

[11]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[12]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[13]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[14]  Michael J. Holst,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..

[15]  P. M. Biesheuvel,et al.  Diffuse-charge effects on the transient response of electrochemical cells. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..

[17]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[18]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[19]  Aihui Zhou,et al.  Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..

[20]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  Claire Chainais-Hillairet,et al.  Study of a Finite Volume Scheme for the Drift-Diffusion System. Asymptotic Behavior in the Quasi-Neutral Limit , 2013, SIAM J. Numer. Anal..

[23]  Aihui Zhou,et al.  Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation , 2006 .

[24]  John R. King,et al.  Time-dependent modelling and asymptotic analysis of electrochemical cells , 2007 .

[25]  Bob Eisenberg,et al.  A conservative finite difference scheme for Poisson–Nernst–Planck equations , 2013, Journal of Computational Electronics.

[26]  Hailiang Liu,et al.  A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..

[27]  Bin Zheng,et al.  Error analysis of finite element method for Poisson-Nernst-Planck equations , 2016, J. Comput. Appl. Math..

[28]  R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .

[29]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[30]  Benzhuo Lu,et al.  A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations , 2018, Numerical Algorithms.

[31]  M. Kurnikova,et al.  Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.

[32]  Claire Chainais-Hillairet,et al.  FINITE VOLUME APPROXIMATION FOR DEGENERATE DRIFT-DIFFUSION SYSTEM IN SEVERAL SPACE DIMENSIONS , 2004 .

[33]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[34]  Benzhuo Lu,et al.  An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations , 2013 .

[35]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[36]  D. Shi,et al.  Superconvergence analysis of finite element method for Poisson–Nernst–Planck equations , 2019, Numerical Methods for Partial Differential Equations.

[37]  Y. C. Zhou,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. , 2011, Biophysical journal.

[38]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[39]  Huadong Gao,et al.  Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations , 2017, J. Sci. Comput..

[40]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[41]  Benzhuo Lu,et al.  Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.

[42]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .