Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions
暂无分享,去创建一个
[1] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[2] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[3] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[4] R. L. Hardy. Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .
[5] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[6] Zongmin Wu,et al. Hermite-Birkhoff interpolation of scattered data by radial basis functions , 1992, Approximation Theory and its Applications.
[7] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .
[8] W. R. Madych,et al. Miscellaneous error bounds for multiquadric and related interpolators , 1992 .
[9] Nira Dyn,et al. Spectral convergence of multiquadric interpolation , 1993, Proceedings of the Edinburgh Mathematical Society.
[10] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[11] Interpolation of curves and surfaces , 1994 .
[12] M. Golberg,et al. Improved multiquadric approximation for partial differential equations , 1996 .
[13] Robin J. Y McLeod,et al. Geometry and Interpolation of Curves and Surfaces , 1998 .
[14] Carsten Franke,et al. Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..
[15] A. Bejancu. Local Accuracy for Radial Basis Function Interpolation on Finite Uniform Grids , 1999 .
[16] F. J. Narcowich,et al. Multilevel Interpolation and Approximation , 1999 .
[17] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[18] Gregory E. Fasshauer,et al. Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..
[19] Robert Schaback,et al. Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..
[20] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[21] Richard K. Beatson,et al. Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..
[22] Richard K. Beatson,et al. Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn , 2001, SIAM J. Sci. Comput..
[23] E. Kansa,et al. Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .
[24] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[25] B. Fornberg,et al. A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .
[26] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[27] E. Kansa,et al. Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .
[28] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[29] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .