Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules

We investigate theoretically the effects of generation and injection of plasmonic carriers from an optically excited metal nanocrystal to a semiconductor contact or to surface molecules. The energy distributions of optically excited hot carriers are dramatically different in metal nanocrystals with large and small sizes. In large nanocrystals, the majority of hot carriers has very small excitation energies, and the excited-carrier distribution resembles the case of a plasmon wave in bulk. For nanocrystal sizes smaller than 20 nm, the carrier distribution extends to larger energies and occupies the whole region EF < e < EF + ℏω. The physical reason for the above behaviors is nonconservation of momentum in a nanocrystal. Because of the above properties, nanocrystals of small sizes are most suitable for designing opto-electronic and photosynthetic devices based on injection of plasmonic electrons and holes. For gold nanocrystals, the optimal sizes for efficient generation of hot carriers with overbarrier ene...

[1]  X. W. Sun,et al.  A plasmonically enhanced charge generation layer for tandem organic light emitting device , 2013 .

[2]  Hyungtak Seo,et al.  Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. , 2011, Nano letters.

[3]  Pierre Berini,et al.  Surface plasmon waveguide Schottky detector. , 2010, Optics express.

[4]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[5]  M. Ouyang,et al.  Tailoring light–matter–spin interactions in colloidal hetero-nanostructures , 2010, Nature.

[6]  Alexander V. Uskov,et al.  Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas , 2014 .

[7]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[8]  V. May,et al.  Plasmon-Enhanced Single-Molecule Electroluminescence: A Computational Study , 2012 .

[9]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[10]  M. Bayindir,et al.  Plasmonically enhanced hot electron based photovoltaic device. , 2013, Optics express.

[11]  Peter Nordlander,et al.  Embedding plasmonic nanostructure diodes enhances hot electron emission. , 2013, Nano letters.

[12]  D. Bonnell,et al.  Electronic transport in porphyrin supermolecule-gold nanoparticle assemblies. , 2012, Nano letters.

[13]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[14]  Martin Wolf,et al.  Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. , 2006, Chemical reviews.

[15]  M. Mayor,et al.  Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime. , 2012, ACS nano.

[16]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[17]  Jean-Claude Weeber,et al.  Launching and decoupling surface plasmons via micro-gratings , 2003 .

[18]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[19]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[20]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[21]  B. O. Seraphin,et al.  Relativistic Band Calculation and the Optical Properties of Gold , 1971 .

[22]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[23]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[26]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[27]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[28]  L. Brus Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. , 2008, Accounts of chemical research.

[29]  Ig. Tamm,et al.  Zur Theorie des Photoeffektes an Metallen , 1931 .

[30]  K. Catchpole,et al.  Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits , 2012 .

[31]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[32]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[33]  C. N. Berglund,et al.  Photoemission Studies of Copper and Silver: Experiment , 1964 .

[34]  Garnett W. Bryant,et al.  Plasmonic properties of metallic nanoparticles: The effects of size quantization , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[35]  Xi Chen,et al.  Exploiting plasmon-induced hot electrons in molecular electronic devices. , 2013, ACS nano.

[36]  George C. Schatz,et al.  Plasmon resonance broadening in small metal particles , 1983 .

[37]  Chen,et al.  Geometrical factors in enhanced photoyield from small metal particles. , 1986, Physical Review Letters.

[38]  Stefan Fischbach,et al.  Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation , 2012 .

[39]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[40]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[41]  M. Steigerwald,et al.  Plasmon Induced Photovoltage and Charge Separation in Citrate-Stabilized Gold Nanoparticles , 2010 .

[42]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[43]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[44]  D. Bonnell,et al.  Plasmon-induced electrical conduction in molecular devices. , 2010, ACS nano.

[45]  A. Nitzan,et al.  Light-induced electronic non-equilibrium in plasmonic particles. , 2013, The Journal of chemical physics.

[46]  G. Lo,et al.  Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide. , 2011, Optics express.

[47]  Photoemission from Metal Nanoparticles , 2011, 1109.1869.

[48]  Pierre Berini,et al.  Thin-Film Schottky Barrier Photodetector Models , 2010, IEEE Journal of Quantum Electronics.

[49]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[50]  Peter Nordlander,et al.  Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. , 2011, Journal of the American Chemical Society.

[51]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.