The p-restricted edge-connectivity of Kneser graphs

Abstract Given a connected graph G and an integer 1 ≤ p ≤ ⌊|V(G)|/2⌋, a p-restricted edge-cut of G is any set of edges S ⊂ E(G), if any, such that G − S is not connected and each component of G − S has at least p vertices; and the p-restricted edge-connectivity of G, denoted λp(G), is the minimum cardinality of such a p-restricted edge-cut. When p-restricted edge-cuts exist, G is said to be super-λp if the deletion from G of any p-restricted edge-cut S of cardinality λp(G) yields a graph G − S that has at least one component with exactly p vertices. In this work, we prove that Kneser graphs K(n, k) are λp-connected for a wide range of values of p. Moreover, we obtain the values of λp(G) for all possible p and all n ≥ 5 when G = K ( n , 2 ) . Also, we discuss in which cases λp(G) attains its maximum possible value, and determine for which values of p graph G = K ( n , 2 ) is super-λp.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[2]  Camino Balbuena,et al.  The k-restricted edge-connectivity of a product of graphs , 2013, Discret. Appl. Math..

[3]  Ou Jianping A bound on 4-restricted edge connectivity of graphs , 2007, Discret. Math..

[4]  Zhao Zhang,et al.  A proof of an inequality concerning k-restricted edge connectivity , 2005, Discret. Math..

[5]  Luis Pedro Montejano,et al.  K-restricted Edge-connectivity in Triangle-free Graphs , 2012, Discret. Appl. Math..

[6]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large girth , 1994, Discret. Math..

[7]  Shiying Wang,et al.  The g-extra connectivity and diagnosability of crossed cubes , 2018, Appl. Math. Comput..

[8]  Chris Godsil,et al.  Erdős-Ko-Rado Theorems: Algebraic Approaches , 2015 .

[9]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large minimum degree and girth , 1997, Discret. Math..

[10]  Yongtang Shi,et al.  Mixed Connectivity of Random Graphs , 2017, COCOA.

[11]  Lei Zhang,et al.  K-restricted Edge Connectivity in (p+1)-clique-free Graphs , 2015, Discret. Appl. Math..

[12]  Zoran Stanić Regular Graphs: A Spectral Approach , 2017 .

[13]  Yoshimi Egawa,et al.  A mixed version of Menger's theorem , 1991, Comb..

[14]  Terunao Soneoka,et al.  Super Edge-Connectivity of Dense Digraphs and Graphs , 1992, Discret. Appl. Math..

[15]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[16]  Andries E. Brouwer,et al.  Eigenvalues and perfect matchings , 2005 .

[17]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[18]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[19]  Shiying Wang,et al.  Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2 , 2009, Discret. Math..

[20]  Xiaofeng Guo,et al.  On a kind of reliability analysis of networks , 2011, Appl. Math. Comput..

[21]  Mario Valencia-Pabon,et al.  On the diameter of Kneser graphs , 2005, Discret. Math..

[22]  Ko-Wei Lih,et al.  Hamiltonian uniform subset graphs , 1987, J. Comb. Theory, Ser. B.

[23]  Camino Balbuena,et al.  Diameter-girth sufficient conditions for optimal extraconnectivity in graphs , 2008, Discret. Math..

[24]  Yan-Quan Feng,et al.  On extra connectivity and extra edge-connectivity of balanced hypercubes , 2018, Appl. Math. Comput..

[25]  Miguel Angel Fiol,et al.  On the extraconnectivity of graphs , 1996, Discret. Math..

[26]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[27]  Lutz Volkmann,et al.  Edge-cuts leaving components of order at least three , 2002, Discret. Math..