Highly-Efficient and Long-Term Stable Perovskite Solar Cells Enabled by a Cross-Linkable n-Doped Hybrid Cathode Interfacial Layer

Hybrid organic–inorganic halide perovskite solar cells (PeSCs) are currently at the forefront of emerging photovoltaic technologies due to their potential for providing cost-effective highly efficient solar energy conversion. The interfacial layers play an important role in determining the efficiency and stability of PeSCs. In this work, a solution-processed cross-linkable hybrid composite film composed of N,N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl chloride silane (DMOAP)-doped [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) is demonstrated as an effective cathode interfacial layer for PeSCs. The hydrolyzable alkoxysilane groups on DMOAP enable moisture cross-linking through the formation of stable siloxane bonds, which is effective in ensuring uniform film coverage of PC61BM on the perovskite layer and preventing the undesirable reaction between the mobile halide ions and Ag electrode. On the other hand, the quaternary ammonium cations on DMOAP can induce the formation of favorable interf...

[1]  C. Chang,et al.  Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer , 2015 .

[2]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[3]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[4]  Jihoon Kang,et al.  Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors , 2008 .

[5]  Chin‐Ti Chen,et al.  A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells , 2016 .

[6]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[7]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[8]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[9]  James E. Roberts,et al.  Incorporation of Alkoxysilanes into Model Latex Systems: Vinyl Copolymerization of Vinyltriethoxysilane and n-Butyl Acrylate , 2003 .

[10]  Y. Kanemitsu,et al.  Spontaneous Defect Annihilation in CH3NH3PbI3 Thin Films at Room Temperature Revealed by Time-Resolved Photoluminescence Spectroscopy. , 2015, The journal of physical chemistry letters.

[11]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[12]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[13]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[14]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[15]  Ji Young Park,et al.  Room Temperature Processable Organic-Inorganic Hybrid Photolithographic Materials Based on a Methoxysilane Cross-Linker , 2008 .

[16]  C. Chang,et al.  Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers , 2016 .

[17]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[18]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[19]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[20]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[21]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[22]  A. Jen,et al.  Doping of Fullerenes via Anion‐Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells , 2013, Advanced materials.

[23]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[24]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[25]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[26]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[27]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[28]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[29]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[30]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[31]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[32]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[33]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[34]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[35]  Mohammad Shabib Akhtar,et al.  High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes. , 2013, Nanoscale.

[36]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[37]  H. Fan,et al.  Recent Advances in Improving the Stability of Perovskite Solar Cells , 2016 .

[38]  Chin‐Ti Chen,et al.  Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells , 2016 .

[39]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[40]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[41]  I. McCulloch,et al.  Organic photovoltaics: Crosslinking for optimal morphology and stability , 2015 .

[42]  Mark C. Lonergan,et al.  Solution phase n-doping of C60and PCBM using tetrabutylammonium fluoride , 2014 .