暂无分享,去创建一个
[1] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[2] Ionel M. Navon,et al. The estimation of functional uncertainty using polynomial chaos and adjoint equations , 2011 .
[3] Louisa Schlachter,et al. A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations , 2018, J. Comput. Appl. Math..
[4] Gaël Poëtte,et al. A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation , 2019, J. Comput. Phys..
[5] Martin Frank,et al. Filtered stochastic Galerkin methods for hyperbolic equations , 2018, J. Comput. Phys..
[6] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[7] B. Perthame,et al. Boltzmann type schemes for gas dynamics and the entropy property , 1990 .
[8] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[9] Jan Nordström,et al. Numerical analysis of the Burgers' equation in the presence of uncertainty , 2009, J. Comput. Phys..
[10] Hendrik Ranocha,et al. Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[11] Alexandre Ern,et al. Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..
[12] Svetlana Tokareva,et al. Numerical Solution of Scalar Conservation Laws with Random Flux Functions , 2016, SIAM/ASA J. Uncertain. Quantification.
[13] Shi Jin,et al. A Stochastic Galerkin Method for Hamilton-Jacobi Equations with Uncertainty , 2015, SIAM J. Sci. Comput..
[14] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[15] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[16] N. Wiener. The Homogeneous Chaos , 1938 .
[17] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[18] Lloyd N. Trefethen,et al. Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..
[19] Kailiang Wu,et al. A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty , 2016, J. Comput. Phys..
[20] B. Perthame. Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .
[21] Alexandre Ern,et al. Adaptive Anisotropic Spectral Stochastic Methods for Uncertain Scalar Conservation Laws , 2012, SIAM J. Sci. Comput..
[22] Timothy J. Barth,et al. Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities , 2013, Uncertainty Quantification in Computational Fluid Dynamics.
[23] C. Rohde,et al. Finite volume schemes for hyperbolic balance laws with multiplicative noise , 2012 .
[24] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[25] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[26] Joel Brezillon,et al. Aerodynamic shape optimization using simultaneous pseudo-timestepping , 2005 .
[27] S. M. Deshpande,et al. Kinetic theory based new upwind methods for inviscid compressible flows , 1986 .
[28] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[29] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[30] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[31] Shi Jin,et al. A stochastic Galerkin method for the Boltzmann equation with uncertainty , 2016, J. Comput. Phys..
[32] Cory D. Hauck,et al. Optimization and large scale computation of an entropy-based moment closure , 2015, J. Comput. Phys..
[33] Jeroen A. S. Witteveen,et al. Adaptive Uncertainty Quantification for Computational Fluid Dynamics , 2013, Uncertainty Quantification in Computational Fluid Dynamics.
[34] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[35] H. Bijl,et al. Probabilistic collocation used in a Two-Step approached for efficient uncertainty quantification in computational fluid dynamics , 2009 .
[36] M. Frank,et al. Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme , 2017, The SMAI journal of computational mathematics.
[37] Christian Rohde,et al. A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method , 2017, IMA Journal of Numerical Analysis.
[38] Eastman N. Jacobs,et al. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel , 1932 .
[39] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[40] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[41] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[42] J. Peraire,et al. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .
[43] J. Alonso,et al. SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .
[44] Louisa Schlachter,et al. A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations , 2017, J. Comput. Phys..