Neutron Stars

This thesis is the fruit of the master degree. An open question regarding the electromagnetic forces on a neutron star is the foundation. The electromagnetic forces are strong on a neutron star, yet they seem to be neglected compared to the force of gravity when describing the star. Neutron stars are assumed to have a very spherical shape, but if the electromagnetic forces cannot be neglected, could the shape be transformed? Being outside the area of expertise of my supervisor, the task became very exploratory, trying to get an understanding of what neutron stars are. Using a simple model for the magnetic field, an oscillating magnetic dipole, the forces on a test particle at the surface of the star was found. Using the values found the next challenge is to find the charge distribution giving rise to the strong electromagnetic fields. Due to the open and vague problematic and time lost on technical difficulties with the simulations the results found in this thesis are limited. The work done may open for the possibility of future work within the subject as neutron stars has become familiar to the graduate student.

[1]  D. Raine General relativity , 1980, Nature.

[2]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living Reviews in Relativity.

[3]  Keith C. Gendreau,et al.  A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.

[4]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[5]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[6]  The Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[7]  M. L. Knichel,et al.  Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC , 2019, 1905.07209.

[8]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[9]  N. V. Keerthana,et al.  Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO , 2018, The Astrophysical Journal.

[10]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[11]  S. Reddy,et al.  Confronting gravitational-wave observations with modern nuclear physics constraints , 2018, The European Physical Journal A.

[12]  R. Lynch,et al.  Universality of free fall from the orbital motion of a pulsar in a stellar triple system , 2018, Nature.

[13]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[14]  L. Lindblom Causal representations of neutron-star equations of state , 2018, Physical Review D.

[15]  J. W. Clark,et al.  Superfluidity in nuclear systems and neutron stars , 2018, The European Physical Journal A.

[16]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[17]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[18]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[19]  U. Montŕeal,et al.  Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B , 2017, 1709.00478.

[20]  B. Mason,et al.  Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC , 2017, 1707.03635.

[21]  Stefano Casertano,et al.  Relativistic deflection of background starlight measures the mass of a nearby white dwarf star , 2017, Science.

[22]  R. Gilliland,et al.  The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry , 2017, 1703.10625.

[23]  Xing Xu,et al.  The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures , 2017 .

[24]  H. Sagawa,et al.  New Mass Model FRDM 2012 and Symmetry Energy , 2017 .

[25]  B. A. Boom,et al.  First search for gravitational waves from known pulsars with Advanced LIGO , 2017 .

[26]  A. Lyne,et al.  New long-term braking index measurements for glitching pulsars using a glitch-template method , 2016, 1611.08314.

[27]  A. Ohnishi,et al.  Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy , 2016, 1611.07133.

[28]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[29]  V. Lainey Quantification of tidal parameters from Solar System data , 2016, 1604.04184.

[30]  P. Freire,et al.  Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.

[31]  D. Chatterjee,et al.  Do hyperons exist in the interior of neutron stars? , 2015, 1510.06306.

[32]  H. Sagawa,et al.  Nuclear ground-state masses and deformations: FRDM(2012) , 2015, 1508.06294.

[33]  A. Lyne,et al.  45 years of rotation of the Crab pulsar , 2014, 1410.0886.

[34]  R. Lynch,et al.  A millisecond pulsar in a stellar triple system , 2014, Nature.

[35]  E. Fraga,et al.  INTERACTING QUARK MATTER EQUATION OF STATE FOR COMPACT STARS , 2013, 1311.5154.

[36]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[37]  Xing Xu,et al.  The AME2016 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[38]  Y. Levin,et al.  Development of a Pulsar-Based Time-Scale , 2012, 1208.3560.

[39]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[40]  J. Gundlach,et al.  Torsion-balance tests of the weak equivalence principle , 2012, 1207.2442.

[41]  K. Yabana,et al.  Three-dimensional structure of low-density nuclear matter , 2011, 1110.6672.

[42]  A. Lyne,et al.  A study of 315 glitches in the rotation of 102 pulsars , 2011, 1102.1743.

[43]  D. Lorimer,et al.  Blind surveys for radio pulsars and transients , 2010, 1012.4695.

[44]  B. Pilecki,et al.  The dynamical mass of a classical Cepheid variable star in an eclipsing binary system , 2010, Nature.

[45]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[46]  A. Melatos,et al.  Quadrupole moment of a magnetically confined mountain on an accreting neutron star: effect of the equation of state , 2010, 1109.1040.

[47]  A. Patruno Accreting millisecond X-ray pulsars, from accretion disk to magnetic poles , 2009 .

[48]  N. Wex,et al.  The double pulsar system: a unique laboratory for gravity , 2009 .

[49]  J. Ellis,et al.  Review of the Safety of LHC Collisions , 2008, 0806.3414.

[50]  J. Schaffner-Bielich Hypernuclear Physics for Neutron Stars , 2008, 0801.3791.

[51]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[52]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[53]  J. Schaffner-Bielich,et al.  Mass, radius and composition of the outer crust of nonaccreting cold neutron stars , 2007, 0707.2740.

[54]  S. Mereghetti,et al.  XMM-Newton Discovery of 7 s Pulsations in the Isolated Neutron Star RX J1856.5–3754 , 2006, astro-ph/0612501.

[55]  G. Colò,et al.  Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes , 2006 .

[56]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[57]  Albert Einstein,et al.  Näherungsweise Integration der Feldgleichungen der Gravitation , 2006 .

[58]  J. Stone,et al.  The Skyrme interaction in finite nuclei and nuclear matter , 2006, nucl-th/0607002.

[59]  S. Ransom,et al.  A Radio Pulsar Spinning at 716 Hz , 2006, Science.

[60]  M. A. Barstow,et al.  Hubble Space Telescope spectroscopy of the Balmer lines in Sirius B , 2005, astro-ph/0506600.

[61]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[62]  A. Tang Strangelet search at RHIC , 2004, nucl-ex/0412011.

[63]  D. N. Basu,et al.  Nuclear matter properties with the re-evaluated coefficients of liquid drop model , 2004, nucl-th/0408013.

[64]  F. Weber Strange quark matter and compact stars , 2004, astro-ph/0407155.

[65]  C. Pethick,et al.  Neutron Star Cooling , 2004, astro-ph/0409751.

[66]  B. C. Joshi,et al.  A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics , 2004, Science.

[67]  C. Kim,et al.  An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system , 2003, Nature.

[68]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[69]  V. Burwitz,et al.  The Thermal radiation of the isolated neutron star RX J1856.5-3754 observed with Chandra and XMM-Newton , 2002, astro-ph/0211536.

[70]  B. Gibson,et al.  The White Dwarf Cooling Sequence of the Globular Cluster Messier 4 , 2002, astro-ph/0205087.

[71]  Harry L. Shipman,et al.  Procyon B: Outside the Iron Box , 2002 .

[72]  P. Ball Some stars may be older than they look , 2000 .

[73]  S. Shibata Pulsar Electrodynamics , 1999, astro-ph/9912514.

[74]  F. Wilczek,et al.  Review of speculative “disaster scenarios” at RHIC , 1999, hep-ph/9910333.

[75]  Z. Arzoumanian,et al.  The Triple Pulsar System PSR B1620–26 in M4 , 1999, astro-ph/9903227.

[76]  N. Glendenning,et al.  Non-Identical Neutron Star Twins , 1998, astro-ph/9807155.

[77]  James G. Williams,et al.  Contributions to the Earth's Obliquity Rate, Precession, and Nutation , 1994 .

[78]  A. Wolszczan,et al.  Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12 , 1994, Science.

[79]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[80]  L. Lindblom Limits on the gravitational redshift form neutron stars , 1984 .

[81]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[82]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[83]  B. Kampfer On the possibility of stable quark and pion-condensed stars , 1981 .

[84]  V. Pandharipande,et al.  Hot and cold, nuclear and neutron matter , 1981 .

[85]  B. Kämpfer On stabilizing effects of relativity in cold spheric stars with a phase transition in the interior , 1981 .

[86]  J. Kuti,et al.  The effects of coloured glue in the QCD motivated bag of heavy quark-antiquark systems , 1980 .

[87]  J. H. Taylor,et al.  Measurements of general relativistic effects in the binary pulsar PSR1913 + 16 , 1979, Nature.

[88]  L. Woltjer Supernovae and Cosmic Rays , 1978 .

[89]  S. Jocelyn Bell Burnell PETIT FOUR * , 1977 .

[90]  L. Mclerran,et al.  Fermions and gauge vector mesons at finite temperature and density. II. The ground-state energy of a relativistic electron gas , 1977 .

[91]  G. Baym,et al.  Can a neutron star be a giant MIT bag , 1976 .

[92]  J. Walecka A theory of highly condensed matter , 1974 .

[93]  J. Negele,et al.  Neutron star matter at sub-nuclear densities , 1973 .

[94]  V. Pandharipande,et al.  Neutron matter computations in Bruckner and variational theories , 1971 .

[95]  D. Staelin,et al.  Pulsating Radio Sources near the Crab Nebula , 1968, Science.

[96]  A. Vaughan,et al.  A Pulsar Supernova Association? , 1968, Nature.

[97]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[98]  F. Pacini,et al.  Energy Emission from a Neutron Star , 1967, Nature.

[99]  K. Thorne,et al.  A Catalogue of Methods for Studying the Normal Modes of Radial Pulsation of General-Relativistic Stellar Models , 1966 .

[100]  G. Derrick Comments on Nonlinear Wave Equations as Models for Elementary Particles , 1964 .

[101]  V. Ambartsumyan,et al.  ON EQUILIBRIUM CONFIGURATIONS OF SUPERDENSE DEGENERATE GAS MASSES , 1962 .

[102]  E. Salpeter Matter at high densities , 1960 .

[103]  J. Pniewski,et al.  Delayed disintegration of a heavy nuclear fragment: I , 1953 .

[104]  M. Lighthill On the Instability of Small Planetary Cores (II) , 1950 .

[105]  J. Duyvendak,et al.  FURTHER DATA BEARING ON THE IDENTIFICATION OF THE CRAB NEBULA WITH THE SUPERNOVA OF 1054 A.D. PART I. THE ANCIENT ORIENTAL CHRONICLES , 1942 .

[106]  J. Oort,et al.  FURTHER DATA BEARING ON THE IDENTIFICATION OF THE CRAB NEBULA WITH THE SUPERNOVA OF 1054 A.D. PART II. THE ASTRONOMICAL ASPECTS , 1942 .

[107]  F. Zwicky,et al.  Cosmic Rays from Super-Novae , 1934, Proceedings of the National Academy of Sciences.

[108]  S. Chandrasekhar The maximum mass of ideal white dwarfs , 1931 .

[109]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .

[110]  R. Fowler On dense matter , 1926 .

[111]  A. Love The Yielding of the Earth to Disturbing Forces , 1909, Nature.

[112]  Doreen Schweizer,et al.  An Introduction To Modern Astrophysics , 2016 .

[113]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[114]  Ya.,et al.  TRE EQUATION OF STATE AT ULTRAHIGH DENSITIES AND ITS RELATIVISTIC LIMITATIONS , 2008 .

[115]  O. Pols,et al.  The Formation of Double Neutron Star Systems , 2004 .

[116]  D. Deyoung The Crab Nebula , 2003 .

[117]  Y. Vartanyan,et al.  On strange stars , 1995 .

[118]  R. Fesen,et al.  Recent Developments Concerning the Crab Nebula , 1985 .

[119]  W. Press,et al.  Gravitational waves. , 1980, Science.

[120]  Z. Seidov STABILITY OF A STAR WITH A PHASE CHANGE IN GENERAL RELATIVITY THEORY. , 1971 .

[121]  G. Baym,et al.  The Ground state of matter at high densities: Equation of state and stellar models , 1971 .

[122]  M. Disney,et al.  Discovery of Optical Signals from Pulsar NP 0532 , 1969, Nature.

[123]  T. Gold Rotating Neutron Stars as the Origin of the Pulsating Radio Sources , 1968, Nature.

[124]  D. Kurdgelaidze,et al.  Hypothesis concerning quark stars , 1965 .

[125]  S. Tsuruta Neutron star models. , 1964 .

[126]  T. Skyrme The effective nuclear potential , 1958 .

[127]  Instability of Small Planetary Cores , 1951, Nature.

[128]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[129]  Xu Rx,et al.  Strange Quark Stars , 2003 .