Probabilistic and average linear widths of Sobolev space with Gaussian measure
暂无分享,去创建一个
[1] KOLMOGOROV'S $ (n,\,\delta)$-WIDTHS OF SPACES OF SMOOTH FUNCTIONS , 1994 .
[2] V. Maiorov. Linear Widths of Function Spaces Equipped with the Gaussian Measure , 1994 .
[3] G. Wasilkowski,et al. Probabilistic and Average Linear Widths inL∞-Norm with Respect tor-fold Wiener Measure , 1996 .
[4] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[5] H. Woxniakowski. Information-Based Complexity , 1988 .
[6] Yongsheng Sun,et al. mu-Average n-Widths on the Wiener Space , 1994, J. Complex..
[7] V. E. Maiorov,et al. ON LINEAR WIDTHS OF SOBOLEV CLASSES AND CHAINS OF EXTREMAL SUBSPACES , 1982 .
[8] J. Hoffmann-jorgensen. Probability in Banach Space , 1977 .
[9] Henryk Wozniakowski,et al. A general theory of optimal algorithms , 1980, ACM monograph series.
[10] R. S. Ismagilov,et al. DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS , 1974 .
[11] Yongsheng Sun,et al. Average Error Bounds of Best Approximation of Continuous Functions on the Wiener Space , 1995, J. Complex..
[12] Klaus Höllig,et al. Approximationszahlen von Sobolev-Einbettungen , 1979 .
[13] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[14] 孙永生. AVERAGE n-WIDTH OF POINT SET IN HILBERT SPACE , 1992 .