Self-Organization and Complex Networks

In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. (Nat. Phys. 3: 813, 2007) that couples the fitness network model defined by Caldarelli et al. (Phys. Rev. Lett. 89: 258702, 2002) with the evolution model proposed by Bak and Sneppen (Phys. Rev. Lett. 71: 4083, 1993) as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.

[1]  B Kahng,et al.  Extremal dynamics on complex networks: analytic solutions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Alain Barrat,et al.  Rate equation approach for correlations in growing network models. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[4]  D. Garlaschelli,et al.  Maximum likelihood: extracting unbiased information from complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Yamir Moreno,et al.  The Bak-Sneppen model on scale-free networks , 2001, cond-mat/0108494.

[6]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[7]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[8]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[9]  Agata Fronczak,et al.  Mean-field theory for clustering coefficients in Barabási-Albert networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  M. A. Muñoz,et al.  Paths to self-organized criticality , 1999, cond-mat/9910454.

[11]  G. Caldarelli,et al.  The fractal properties of Internet , 2000, cond-mat/0009178.

[12]  Bernhard Mikeska MONTE CARLO RENORMALIZATION-GROUP APPROACH TO THE BAK-SNEPPEN MODEL , 1997 .

[13]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[14]  Sungmin Lee,et al.  Coevolutionary dynamics on scale-free networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Ginestra Bianconi,et al.  Clogging and self-organized criticality in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ronald Dickman,et al.  Asymmetric dynamics and critical behavior in the Bak–Sneppen model , 2004 .

[17]  David L. Dilcher,et al.  The fossil record , 1992 .

[18]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[19]  Guido Caldarelli,et al.  A self-organized model for network evolution , 2008 .

[20]  D. Garlaschelli,et al.  The scale-free topology of market investments , 2003, cond-mat/0310503.

[21]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[22]  D. Garlaschelli,et al.  Effects of network topology on wealth distributions , 2007, 0711.4710.

[23]  Ayşe Erzan,et al.  Content-based networks: a pedagogical overview. , 2007, Chaos.

[24]  Rahul V. Kulkarni,et al.  Evolutionary dynamics in the Bak-Sneppen model on small-world networks , 1999 .

[25]  M. Barthelemy,et al.  Quantifying the taxonomic diversity in real species communities , 2006, q-bio/0612023.

[26]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[27]  Feasible optimality implies Hack's Law , 1998 .

[28]  B. Burlando The Fractal Dimension of Taxonomic Systems , 1990 .

[29]  Dorogovtsev,et al.  Bak-sneppen model near zero dimension , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[31]  B Burlando,et al.  The fractal geometry of evolution. , 1993, Journal of theoretical biology.

[32]  G Caldarelli,et al.  Probabilistic approach to the Bak-Sneppen model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[34]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[35]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[36]  Guido Caldarelli,et al.  Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science , 2007 .

[37]  Olaf Ellers,et al.  Scaling in biology , 2001, Complex..

[38]  Flyvbjerg,et al.  Mean field theory for a simple model of evolution. , 1993, Physical review letters.

[39]  R.V.Kulkarni,et al.  Evolutionary dynamics in the Bak-Sneppen model on small-world networks , 1999, cond-mat/9905066.

[40]  Damián H. Zanette,et al.  Opinion spreading and agent segregation on evolving networks , 2006 .

[41]  G Caldarelli,et al.  Perturbative approach to the Bak-Sneppen model. , 2001, Physical review letters.

[42]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[43]  P. De Los Rios,et al.  High-Dimensional Bak-Sneppen Model , 1998 .

[44]  K. Sneppen,et al.  Detection of topological patterns in complex networks: correlation profile of the internet , 2002, cond-mat/0205379.

[45]  Guido Caldarelli,et al.  Universal scaling relations in food webs , 2003, Nature.

[46]  R. C. Ball,et al.  Fractal growth of copper electrodeposits , 1984, Nature.

[47]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[48]  Caldarelli,et al.  Modelling Coevolution in Multispecies Communities. , 1998, Journal of theoretical biology.

[49]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[50]  R. Solé,et al.  Optimization in Complex Networks , 2001, cond-mat/0111222.

[51]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[52]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[53]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[54]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[55]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[56]  Guido Caldarelli,et al.  Mean field theory for ordinary and hot sandpiles , 1998 .

[57]  Peter Grassberger,et al.  The Bak-Sneppen model for punctuated evolution☆ , 1995 .

[58]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[59]  B. M. Fulk MATH , 1992 .

[60]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Diego Garlaschelli,et al.  Fitness-dependent topological properties of the world trade web. , 2004, Physical review letters.

[62]  Diego Garlaschelli,et al.  Wealth dynamics on complex networks , 2004 .

[63]  B Kahng,et al.  Sandpile on scale-free networks. , 2003, Physical review letters.

[64]  Saburo Matsuoka,et al.  Fractal Character of Fracture Surfaces on Metals , 1991 .

[65]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[66]  M. Newman,et al.  Origin of degree correlations in the Internet and other networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  D. Garlaschelli,et al.  Self-organized network evolution coupled to extremal dynamics , 2006, cond-mat/0611201.

[68]  Guido Caldarelli,et al.  LETTER TO THE EDITOR: Stationary self-organized fractal structures in an open, dissipative electrical system , 1998 .

[69]  Michael J. Benton,et al.  The fossil record 2 , 1993 .

[70]  G. Caldarelli,et al.  Vertex intrinsic fitness: how to produce arbitrary scale-free networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Sanjay Jain,et al.  Autocatalytic sets and the growth of complexity in an evolutionary model , 1998, adap-org/9809003.

[72]  Kelly K. Caylor,et al.  Feasible optimality of vegetation patterns in river basins , 2004 .

[73]  Francisco C. Santos,et al.  Cooperation Prevails When Individuals Adjust Their Social Ties , 2006, PLoS Comput. Biol..

[74]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[75]  A. Barrat,et al.  Consensus formation on adaptive networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[77]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[78]  T. Schopf Models in Paleobiology , 1972 .

[79]  Agata Fronczak,et al.  Self-organized criticality and coevolution of network structure and dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.