Application of Neuroanatomical Ontologies for Neuroimaging Data Annotation

The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website1. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

[1]  Larry W. Swanson,et al.  BAMS Neuroanatomical Ontology: Design and Implementation , 2008, Frontiers Neuroinformatics.

[2]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[3]  Angela R. Laird,et al.  BrainMap , 2007, Neuroinformatics.

[4]  Christine Golbreich,et al.  The Foundational Model of Anatomy in OWL: Experience and Perspectives , 2006, OWLED.

[5]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[6]  Arthur W. Toga,et al.  Neuroinformatics Original Research Article , 2022 .

[7]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[8]  Dan Suciu,et al.  Generating Application Ontologies from Reference Ontologies , 2008, AMIA.

[9]  Iain E. Buchan,et al.  PsyGrid: Applying e-Science to Epidemiology , 2006, 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06).

[10]  Greg G. Brown,et al.  Dysregulation of working memory and default‐mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study , 2009, Human brain mapping.

[11]  Thomas A. Russ,et al.  Biomedical knowledge engineering tools based on experimental design: a case study based on neuroanatomical tract-tracing experiments , 2009, K-CAP '09.

[12]  V D Calhoun,et al.  Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. , 2009, Schizophrenia bulletin.

[13]  José L. V. Mejino,et al.  The Evolving Neuroanatomical Component of the Foundational Model of Anatomy , 2003, AMIA.

[14]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[15]  A. Koeppen The Brain Atlas, third edition, T.A. Woolsey, J. Hanaway, M.H. Gado (Eds.). Wiley, Hoboken, New Jersey, USA (2008), 254 pages, US$ 60, ISBN: 978-0-470-08476-2 , 2008 .

[16]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[17]  Vince D. Calhoun,et al.  Mining the Mind Research Network: A Novel Framework for Exploring Large Scale, Heterogeneous Translational Neuroscience Research Data Sources , 2009, NeuroImage.

[18]  John D. Van Horn,et al.  Mapping the Human Brain: New Insights from fMRI Data Sharing , 2007, Neuroinformatics.

[19]  Jack Park,et al.  Creating neuroscience ontologies. , 2007, Methods in molecular biology.

[20]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Dan Suciu,et al.  Neuroinformatics Original Research Article Distributed Xquery-based Integration and Visualization of Multimodality Brain Mapping Data , 2022 .

[22]  Jessica A. Turner,et al.  Modeling biomedical experimental processes with OBI , 2010, J. Biomed. Semant..

[23]  Douglas M. Bowden,et al.  NeuroNames Brain Hierarchy , 1995, NeuroImage.

[24]  José L. V. Mejino,et al.  A reference ontology for biomedical informatics: the Foundational Model of Anatomy , 2003, J. Biomed. Informatics.

[25]  Lars Kai Hansen,et al.  Mining for associations between text and brain activation in a functional neuroimaging database , 2007, Neuroinformatics.

[26]  Cornelius Rosse,et al.  The Foundational Model of Anatomy Ontology , 2008, Anatomy Ontologies for Bioinformatics.

[27]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[28]  Christopher G. Chute,et al.  BioPortal: ontologies and integrated data resources at the click of a mouse , 2009, Nucleic Acids Res..

[29]  Sergi G. Costafreda,et al.  Pooling fMRI Data: Meta-Analysis, Mega-Analysis and Multi-Center Studies , 2009, Front. Neuroinform..

[30]  Daniel L. Rubin,et al.  Translating the Foundational Model of Anatomy into OWL , 2008, J. Web Semant..

[31]  C. Langlotz RadLex: a new method for indexing online educational materials. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[32]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[33]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[34]  Russell A. Poldrack,et al.  In praise of tedious anatomy , 2007, NeuroImage.

[35]  David B. Keator,et al.  A National Human Neuroimaging Collaboratory Enabled by the Biomedical Informatics Research Network (BIRN) , 2008, IEEE Transactions on Information Technology in Biomedicine.

[36]  Larry W. Swanson,et al.  Collating and curating neuroanatomical nomenclatures : principles and use of the Brain Architecture Knowledge Management System ( BAMS ) , 2010 .

[37]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[38]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[39]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[40]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.

[41]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[42]  Daniel L. Rubin,et al.  FMA-RadLex: An Application Ontology of Radiological Anatomy derived from the Foundational Model of Anatomy Reference Ontology , 2008, AMIA.

[43]  Jan Derrfuss,et al.  Lost in localization: The need for a universal coordinate database , 2009, NeuroImage.

[44]  Yoshio Tanaka,et al.  Ontology for FMRI as a biomedical informatics method. , 2008, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[45]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[46]  P. Mitra,et al.  The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations , 2009, PloS one.

[47]  A Barbot,et al.  Bioinformatic challenges and solutions for IMAGEN: a large European multi centre genetic and imaging study. , 2009, NeuroImage.

[48]  Maryann E. Martone,et al.  Ontologies for Neuroscience: What are they and What are they Good for? , 2008, Frontiers in neuroscience.

[49]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[50]  A W Toga,et al.  Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. , 2009, Schizophrenia bulletin.

[51]  Amarnath Gupta,et al.  Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data. , 2008, AMIA ... Annual Symposium proceedings. AMIA Symposium.