Robust and efficient estimation by minimising a density power divergence

A minimum divergence estimation method is developed for robust parameter estimation. The proposed approach uses new density-based divergences which, unlike existing methods of this type such as minimum Hellinger distance estimation, avoid the use of nonparametric density estimation and associated complications such as bandwidth selection. The proposed class of ‘density power divergences’ is indexed by a single parameter α which controls the trade-off between robustness and efficiency. The methodology affords a robust extension of maximum likelihood estimation for which α = 0. Choices of α near zero afford considerable robustness while retaining efficiency close to that of maximum likelihood.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[3]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[4]  Calyampudi R. Rao Criteria of estimation in large samples , 1965 .

[5]  S. Stigler Do Robust Estimators Work with Real Data , 1977 .

[6]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[7]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[8]  R. Tamura,et al.  Minimum Hellinger Distance Estimation for Multivariate Location and Covariance , 1986 .

[9]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[10]  D. G. Simpson,et al.  Minimum Hellinger Distance Estimation for the Analysis of Count Data , 1987 .

[11]  William J. Welch,et al.  Rerandomizing the median in matched-pairs designs , 1987 .

[12]  D. G. Simpson,et al.  Hellinger Deviance Tests: Efficiency, Breakdown Points, and Examples , 1989 .

[13]  Lawrence D. Brown,et al.  How to Approximate a Histogram by a Normal Density , 1993 .

[14]  B. Lindsay Efficiency versus robustness : the case for minimum Hellinger distance and related methods , 1994 .

[15]  E. Ronchetti,et al.  Robust Bounded-Influence Tests in General Parametric Models , 1994 .

[16]  B. Lindsay,et al.  Minimum disparity estimation for continuous models: Efficiency, distributions and robustness , 1994 .

[17]  E. Ziegel Introduction to the Practice of Statistics (2nd ed.) , 1994 .

[18]  C. Field,et al.  Robust Estimation - a Weighted Maximum-Likelihood Approach , 1994 .

[19]  Ricardo Fraiman,et al.  Minimum distance density-based estimation , 1995 .

[20]  M. P. Windham Robustifying Model Fitting , 1995 .

[21]  E. Ronchetti,et al.  Robust Estimation for Grouped Data , 1997 .

[22]  Elvezio Ronchetti,et al.  Robustness Aspects of Model Choice , 1997 .