Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure

[1]  N. Geldner,et al.  The endodermis—development and differentiation of the plant’s inner skin , 2012, Protoplasma.

[2]  A. Koffi,et al.  Ethnomedical study and iron content of some medicinal herbs used in traditional medicine in Cote d'Ivoire for the treatment of anaemia. , 2011, African journal of traditional, complementary, and alternative medicines : AJTCAM.

[3]  R. Amils,et al.  An Improved Semiquantitative Method for Elemental Analysis of Plants Using Inductive Coupled Plasma Mass Spectrometry , 2011, Biological Trace Element Research.

[4]  R. Elbaum,et al.  Calcium and silicon mineralization in land plants: transport, structure and function. , 2011, Plant science : an international journal of experimental plant biology.

[5]  M. Leishman,et al.  Is plant ecology more siliceous than we realise? , 2011, Trends in plant science.

[6]  F. D. Bona,et al.  Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha , 2010, Plant and Soil.

[7]  V. Fuente,et al.  Epidermal micromorphology of the genus Festuca L. (Poaceae) in the Iberian Peninsula , 2010, Plant Systematics and Evolution.

[8]  N. Yamaji,et al.  Functions and transport of silicon in plants , 2008, Cellular and Molecular Life Sciences.

[9]  Carole C Perry,et al.  Silica in plants: biological, biochemical and chemical studies. , 2007, Annals of botany.

[10]  K. Tamai,et al.  Genotypic Difference in Silicon Uptake and Expression of Silicon Transporter Genes in Rice1 , 2007, Plant Physiology.

[11]  T. Fujiwara,et al.  An efflux transporter of silicon in rice , 2007, Nature.

[12]  R. Amils,et al.  Composition, speciation and distribution of iron minerals in Imperata cylindrica. , 2007, Plant physiology and biochemistry : PPB.

[13]  N. Yamaji,et al.  Spatial Distribution and Temporal Variation of the Rice Silicon Transporter Lsi11 , 2007, Plant Physiology.

[14]  Naoki Yamaji,et al.  Silicon uptake and accumulation in higher plants. , 2006, Trends in plant science.

[15]  G. Hause,et al.  Ultrastructure and microanalysis of silica bodies in Dactylis Glomerata L. , 2006 .

[16]  Dolores R. Piperno,et al.  Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists , 2006 .

[17]  A. Mead,et al.  Phylogenetic variation in the silicon composition of plants. , 2005, Annals of botany.

[18]  N. Rodriguez,et al.  Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. , 2004, The New phytologist.

[19]  馬 建鋒 Soil, Fertilizer, and Plant Silicon Research in Japan , 2003 .

[20]  P. Rudall,et al.  Systematics and biology of silica bodies in monocotyledons , 2003, The Botanical Review.

[21]  T. Hattori,et al.  The dynamics of silicon deposition in the sorghum root endodermis. , 2003, The New phytologist.

[22]  C. Peterson,et al.  Root Endodermis and Exodermis: Structure, Function, and Responses to the Environment , 2002, Journal of Plant Growth Regulation.

[23]  M. Jianfeng,et al.  Soil, Fertilizer, and Plant Silicon Research in Japan , 2002 .

[24]  H. Motomura,et al.  Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae-Bambusoideae). , 2002, Annals of botany.

[25]  M. Iwaki,et al.  The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants , 2001, Plant and Soil.

[26]  J. Cornelissen,et al.  Functional leaf attributes predict litter decomposition rate in herbaceous plants. , 1997, The New phytologist.

[27]  J. Ellis,et al.  Methyl Bromide Soil Fumigation Alters Plant Element Concentrations , 1995 .

[28]  J. D. Bilbro,et al.  A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. , 1991 .

[29]  M. Hodson,et al.  X-ray Microanalysis of the Seminal Root of Sorghum bicolor with Particular Reference to Silicon , 1989 .

[30]  L. N. Eleuterius,et al.  Silica Deposition in Some C3 and C4 Species of Grasses, Sedges and Composites in the USA , 1989 .

[31]  A. Wallace RELATIONSHIPS AMONG NITROGEN, SILICON, AND HEAVY METAL UPTAKE BY PLANTS , 1989 .

[32]  M. Hodson,et al.  Subcellular localization of mineral deposits in the roots of wheat (Triticum aestivum L.) , 1989, Protoplasma.

[33]  T. A. Hanley,et al.  Role of Tannins in Defending Plants Against Ruminants: Reduction in Dry Matter Digestion? , 1987, Ecology.

[34]  Peter B. Kaufman,et al.  Studies on Silicification of Epidermal Tissues of Grasses as Investigated by Soft X-ray Image Analysis : II. Differences in frequency of silica bodies in bulliform cells at different positions in the leaves of rice plants , 1984 .

[35]  D. Parry,et al.  The Ultrastructure and Electron-probe Microassay of Silicon Deposits in the Endodermis of the Seminal Roots of Sorghum bicolor (L.) Moench , 1976 .

[36]  57. GeorgBorissow: Über die eigenartigen Kieselkörper in der Wurzelendodermis bei Andropogon‐Arten , 1924, Berichte der Deutschen Botanischen Gesellschaft.

[37]  Katri Saijonkari-Pahkala Non-wood plants as raw material for pulp and paper , 2001 .

[38]  D. Piperno,et al.  The silica bodies of tropical American grasses : morphology, taxonomy, and implications for grass systematics and fossil phytolith identification , 1998 .

[39]  C. C. Harrison,et al.  Evidence for intramineral macromolecules containing protein from plant silicas. , 1996, Phytochemistry.

[40]  W. D. Bennett,et al.  Determination of amorphous silica and total silica in plant materials , 1987 .