The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites

The effect of polyetherimide (PEI) as a compatibilizing agent on the morphology, thermal, electrical and dynamic mechanical properties of poly(ether ether ketone) (PEEK)/single-walled carbon nanotube (SWCNT) nanocomposites, has been investigated for different CNT loadings. After a pre-processing step based on ball milling and pre-mixing under mechanical treatment in ethanol, the samples were prepared by melt extrusion. A more homogeneous distribution of the CNTs throughout the matrix is found for composites containing PEI, as revealed by scanning electron microscopy. Thermogravimetric analysis demonstrates an increase in the matrix degradation temperatures under dry air and nitrogen atmospheres with the addition of SWCNTs; the level of thermal stability of these nanocomposites is maintained when PEI is incorporated. Both differential scanning calorimetry and synchrotron x-ray scattering studies indicate a slight decrease in the crystallization temperatures of the compatibilized samples, and suggest the existence of reorganization phenomena during the heating, which are favoured in the composites incorporating the compatibilizer, due to their smaller crystal size. Dynamic mechanical studies show an increase in the glass transition temperature of the nanocomposites upon the addition of PEI. Furthermore, the presence of PEI causes an enhancement in the storage modulus, and hence in the rigidity of these systems, attributed to an improved interfacial adhesion between the reinforcement and the matrix. The electrical and thermal conductivities of these composites decrease with the incorporation of PEI. Overall, the compatibilized samples exhibit improved properties and are promising for their use in industrial applications.

[1]  K. Mai,et al.  Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites , 2009 .

[2]  I. Jiménez,et al.  Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS2 nanocomposites. , 2008, The journal of physical chemistry. B.

[3]  C. Das,et al.  Mechanical, morphological and thermal properties of in situ ternary composites based on poly(ether imide), silicone rubber and liquid crystalline polymer , 2008 .

[4]  S. Kiatkamjornwong,et al.  Influences of blend compatibilizers on dynamic, mechanical, and morphological properties of dynamically cured maleated natural rubber and high-density polyethylene blends , 2008 .

[5]  P. Ma,et al.  Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes , 2007 .

[6]  G. Hu,et al.  Efficiency of graft copolymers as compatibilizers for immiscible polymer blends , 2007 .

[7]  Bruce C. Barker,et al.  Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. , 2007, The Journal of chemical physics.

[8]  K. N. Pandey,et al.  Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites , 2007 .

[9]  C. Ni,et al.  Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents , 2007 .

[10]  Jie Jin,et al.  A DSC study of effect of carbon nanotubes on crystallisation behaviour of poly(ethylene oxide) , 2007 .

[11]  L. Song,et al.  Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites , 2007 .

[12]  K. N. Pandey,et al.  The flexible PEI composites , 2006 .

[13]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[14]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[15]  S. Kim,et al.  Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6‐naphthalate) nanocomposites , 2006 .

[16]  Richard H. Harris,et al.  Nanoparticle networks reduce the flammability of polymer nanocomposites , 2005, Nature materials.

[17]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[18]  P. Ajayan,et al.  Synthesis and Characterization of Thickness-Aligned Carbon Nanotube−Polymer Composite Films , 2005 .

[19]  Karl Schulte,et al.  Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites , 2004 .

[20]  Jianyi Shen,et al.  Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry , 2004 .

[21]  Tianxi Liu,et al.  Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites , 2004 .

[22]  J. Tour,et al.  Glass transition of polymer/single-walled carbon nanotube composite films , 2003 .

[23]  M. A. Gómez,et al.  Thermal properties, structure and morphology of PEEK/thermotropic liquid crystalline polymer blends , 2003 .

[24]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[25]  Philipp Werner,et al.  Carbon-nanofibre-reinforced poly(ether ether ketone) composites , 2002 .

[26]  Andrea E O'Rear,et al.  SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization , 2002 .

[27]  M. Cakmak,et al.  Development of structural hierarchy during uniaxial drawing of PEEK/PEI blends from amorphous precursors , 2002 .

[28]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[29]  M. Jenkins Crystallisation in miscible blends of PEEK and PEI , 2001 .

[30]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[31]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[32]  G. Tibbetts,et al.  Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .

[33]  P. D. Mangalgiri Composite materials for aerospace applications , 1999 .

[34]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[35]  A. A. Goodwin,et al.  Dynamic mechanical relaxation behaviour of poly(ether ether ketone)/poly(etherimide) blends , 1997 .

[36]  A. Nandi,et al.  Cocrystallization of poly(vinylidene fluoride) and vinylidene fluoride-tetrafluoroethylene copolymers: 2. Thermodynamic study , 1996 .

[37]  K. Krueger,et al.  Investigation of the melting behavior of poly(aryl ether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation , 1993 .

[38]  T. Kurauchi,et al.  Synthesis and properties of polyimide–clay hybrid , 1993 .

[39]  L. Pang,et al.  Thermogravimetric analysis of carbon nanotubes and nanoparticles , 1993 .

[40]  D. Baird,et al.  The role of partial miscibility on the properties of blends of a polyetherimide and two liquid crystalline polymers , 1993 .

[41]  A. Dibenedetto,et al.  The processing of ternary LCP/LCP/thermoplastic blends , 1993 .

[42]  N. L. Hancox High performance thermoplastic resins and their composites S. Béland: Noyes Data Corporation, NY, USA 1991, ISBN-8153-1278-3, £45 , 1993 .

[43]  S. D. Hudson,et al.  Semicrystalline morphology of poly(aryl ether ether ketone)/poly(ether imide) blends , 1992 .

[44]  A. Isayev,et al.  The dynamic properties, temperature transitions, and thermal stability of poly (etherether ketone)-thermotropic liquid crystalline polymer blends , 1991 .

[45]  G. Groeninckx,et al.  BINARY BLENDS OF POLY(ETHER ETHER KETONE) AND POLY(ETHER IMIDE). MISCIBILITY, CRYSTALLIZATION BEHAVIOR, AND SEMICRYSTALLINE MORPHOLOGY , 1991 .

[46]  S. Béland 7 – Costs and Aircraft Applications of Thermoplastic Composites , 1990 .

[47]  J. Willis,et al.  Processing‐morphology relationships of compatibilized polyolefin/polyamide blends. Part I: The effect of an lonomer compatibilizer on blend morphology , 1988 .

[48]  Peggy Cebe,et al.  Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature , 1987 .

[49]  O. B. Searle,et al.  Victrex® poly(ethersulfone) (PES) and Victrex® poly(etheretherketone) (PEEK) , 1985 .

[50]  Christian Riekel,et al.  Synchrotron radiation in polymer science , 1985 .

[51]  D. J. Blundell,et al.  The morphology of poly(aryl-ether-ether-ketone) , 1983 .

[52]  T. Fox Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Poly-mer System , 1956 .