UNIVERSITY OF CALIFORNIA, RIVERSIDE
暂无分享,去创建一个
Michel L. Lapidus | Stephane Jaffard | Machiel van Frankenhuijsen | S. Jaffard | M. Lapidus | M. V. Frankenhuijsen
[1] A. Besicovitch,et al. On the Complementary Intervals of a Linear Closed Set of Zero Lebesgue Measure , 1954 .
[2] Michel L. Lapidus,et al. The Riemann Hypothesis and Inverse Spectral Problems for Fractal Strings , 1995 .
[3] J. L. Véhel,et al. Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .
[4] M. Lapidus,et al. A Prime Orbit Theorem for Self-Similar Flows and Diophantine Approximation , 2001, math/0111067.
[5] Jacques Lévy Véhel,et al. Introduction to the Multifractal Analysis of Images , 1998 .
[6] B. Mandelbrot. Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .
[7] R. Mauldin,et al. Exact Hausdorff dimension in random recursive constructions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[8] B. Sapoval,et al. Vibrations of fractal drums. , 1991, Physical review letters.
[9] R. Mauldin,et al. Multifractal decompositions of Moran fractals , 1992 .
[10] Michel L. Lapidus,et al. Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann-Zeta-Function , 1997 .
[11] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[12] Michel L. Lapidus,et al. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture , 1991 .
[13] B. Mandelbrot. Multifractals And 1/F Noise , 1999 .
[14] S. Jaffard. The multifractal nature of Lévy processes , 1999 .
[15] Jacques Lévy Véhel,et al. Multifractal Analysis of Choquet Capacities , 1998 .
[16] R. Ellis,et al. LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .
[17] R. Mauldin,et al. Multifractal decompositions of digraph recursive fractals , 1992 .
[18] L. Olsen,et al. A Multifractal Formalism , 1995 .
[19] Michel L. Lapidus,et al. A Tube Formula for the Koch Snowflake Curve, with Applications to Complex Dimensions , 2004, math-ph/0412029.
[20] Michel L. Lapidus,et al. Complex Dimensions of Self-Similar Fractal Strings and Diophantine Approximation , 2003, Exp. Math..
[21] G. Michon,et al. On the multifractal analysis of measures , 1992 .
[22] L. Olsen,et al. Random Geometrically Graph Directed Self-Similar Multifractals , 1994 .
[23] Michel L. Lapidus,et al. Spectral and Fractal Geometry: From the Weyl-Berry Conjecture for the Vibrations of Fractal Drums to the Riemann Zeta-Function , 1992 .
[24] Stéphane Jaffard,et al. Oscillation spaces: Properties and applications to fractal and multifractal functions , 1998 .
[25] Michel L. Lapidus,et al. Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics , 2005 .
[26] Michel L. Lapidus,et al. The Riemann Zeta-Function and the One-Dimensional Weyl-Berry Conjecture for Fractal Drums , 1993 .
[27] Michel L. Lapidus,et al. Counterexamples to the modified Weyl–Berry conjecture on fractal drums , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[28] Y. Meyer,et al. Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .