Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles

High–spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation–based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

[1]  Jirka Simunek,et al.  Physical factors affecting the transport and fate of colloids in saturated porous media , 2002 .

[2]  V. P. Evangelou,et al.  A review: Pyrite oxidation mechanisms and acid mine drainage prevention , 1995 .

[3]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[4]  C. Allain,et al.  Settling by Cluster Deposition in Aggregating Colloidal Suspensions , 1996 .

[5]  Bruce D. Honeyman,et al.  Geochemistry: Colloidal culprits in contamination , 1999, Nature.

[6]  Kyoung-Woong Kim,et al.  Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea , 2005, Environmental geochemistry and health.

[7]  P. Sadler,et al.  A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Banfield,et al.  Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California , 2000 .

[9]  M. Hochella There’s plenty of room at the bottom: nanoscience in geochemistry , 2002 .

[10]  J. Banfield,et al.  Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite , 2004 .

[11]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[12]  P. Schindler,et al.  Surface Reactions in Aqueous Metal Sulfide Systems , 1991 .

[13]  Walter Vogel,et al.  Structure and Stability of Monodisperse 1.4-nm ZnS Particles Stabilized by Mercaptoethanol , 2000 .

[14]  M. Diallo,et al.  Nanoparticles and Water Quality , 2005 .

[15]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[16]  Henry H. Mantsch,et al.  Infrared spectroscopy of biomolecules , 1996 .

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  D. Pearson,et al.  Microanalysis of δ13C, δ15N, and N abundances in diamonds by secondary ion mass spectrometry , 2002 .

[19]  G. Gadd,et al.  Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. , 1999, Microbiology.

[20]  D. Zhao,et al.  The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates , 2002 .

[21]  J. Banfield,et al.  Radionuclide contamination: Nanometre-size products of uranium bioreduction , 2002, Nature.

[22]  Geoffrey M. Gadd,et al.  Linked Redox Precipitation of Sulfur and Selenium under Anaerobic Conditions by Sulfate-Reducing Bacterial Biofilms , 2003, Applied and Environmental Microbiology.

[23]  M. Schoonen,et al.  SURFACE CHARGE DEVELOPMENT ON TRANSITION METAL SULFIDES : AN ELECTROKINETIC STUDY , 1998 .

[24]  D. Schneider To whom correspondence should be addressed , 2008 .

[25]  Bruce E. Logan,et al.  Settling Velocities of Fractal Aggregates , 1996 .

[26]  M. Schoonen,et al.  Pyrite surface interaction with selected organic aqueous species under anoxic conditions , 2000 .

[27]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[28]  D. Nies,et al.  CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus , 1992, Journal of bacteriology.

[29]  T. Barkay,et al.  Metal and radionuclide bioremediation: issues, considerations and potentials. , 2001, Current opinion in microbiology.

[30]  J. Gilman,et al.  Nanotechnology , 2001 .

[31]  J. L. Nadeau,et al.  Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms , 2005, Applied and Environmental Microbiology.

[32]  W. Bae,et al.  Biomolecularly capped uniformly sized nanocrystalline materials: Glutathione-capped ZnS nanocrystals , 1999 .

[33]  G. Gadd,et al.  Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria , 2005, Applied and Environmental Microbiology.

[34]  J. Lloyd,et al.  Metal reduction by sulphate-reducing bacteria: Physiological diversity and metal specificity , 2001 .

[35]  G. Luther,et al.  Evidence for aqueous clusters as intermediates during zinc sulfide formation , 1999 .

[36]  J. Chermak,et al.  Mineral-Water Interface Geochemistry , 1991 .

[37]  M. Khazaeli,et al.  Cadmium-binding component in Escherichia coli during accommodation to low levels of this ion , 1981, Applied and environmental microbiology.

[38]  B. Rosen Bacterial resistance to heavy metals and metalloids , 1996, JBIC Journal of Biological Inorganic Chemistry.

[39]  S. Eykyn Microbiology , 1950, The Lancet.