Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies

The intraoperative identification and resection of glioma is a significant and important challenge in neurosurgery. Complete resection of the enhancing tumour increases the median survival time in glioblastoma compared to partial glioma resection; however, it is achieved in fewer than half of eligible patients when conventional tumour identification methods are used. Increasing the incidence of complete resection, without causing excess morbidity, requires new methods to accurately identify neoplastic tissue intraoperatively, such as use of the drug 5-amino-levulinic acid (ALA). After ALA ingestion, the fluorescent molecule protoporphyrin IX (PpIX) accumulates in high grade glioma, allowing the neurosurgeon to more easily detect and accurately resect tumour. The utility of ALA has been demonstrated in a large, multicentre phase III randomised control trial of 243 patients with high grade glioma. ALA use led to a significant increase in the incidence of complete resection (65% compared to 36%), improved progression-free survival at 6 months (41% compared to 21%), fewer reinterventions, and delayed onset of neurological deterioration. This review provides a broad assessment of ALA-PpIX fluorescence-guided resection, with Part 1 focusing on its clinical efficacy, and correlations with imaging and histology. The theoretical, biochemical and practical aspects of ALA use are reviewed in Part 2.

[1]  Keith D. Paulsen,et al.  Estimation of Brain Deformation for Volumetric Image Updating in Protoporphyrin IX Fluorescence-Guided Resection , 2009, Stereotactic and Functional Neurosurgery.

[2]  Jörg-Christian Tonn,et al.  Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. , 2011, Journal of neurosurgery.

[3]  Kaoru Sakatani,et al.  Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. , 2007, Neurologia medico-chirurgica.

[4]  F. Floeth,et al.  Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence , 2011, Clinical Neurology and Neurosurgery.

[5]  Z L Gokaslan,et al.  A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. , 2001, Journal of neurosurgery.

[6]  J. Felsberg,et al.  Fluorescence-Guided Resection of Spinal Metastases of Malignant Glioma: Report of 2 Cases , 2011, Journal of Neurological Surgery—Part A.

[7]  J. Fandino,et al.  Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas , 2010, Acta Neurochirurgica.

[8]  Y. Kajimoto,et al.  Use of 5-aminolevulinic acid in fluorescence-guided resection of meningioma with high risk of recurrence. Case report. , 2007, Journal of neurosurgery.

[9]  S. Goldman,et al.  POSITRON EMISSION TOMOGRAPHY‐GUIDED VOLUMETRIC RESECTION OF SUPRATENTORIAL HIGH‐GRADE GLIOMAS: A SURVIVAL ANALYSIS IN 66 CONSECUTIVE PATIENTS , 2009, Neurosurgery.

[10]  Arya Nabavi,et al.  High-field iMRI in glioblastoma surgery: improvement of resection radicality and survival for the patient? , 2011, Acta neurochirurgica. Supplement.

[11]  W. Stummer,et al.  Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue , 1998, Acta Neurochirurgica.

[12]  S. Tejada Solis,et al.  Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience , 2011, Journal of Neuro-Oncology.

[13]  Ricardo J Komotar,et al.  Neurosurgery for Brain Tumors: Update on Recent Technical Advances , 2011, Current neurology and neuroscience reports.

[14]  W. Curran,et al.  Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. , 1998, International journal of radiation oncology, biology, physics.

[15]  H Stepp,et al.  Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. , 1998, Neurosurgery.

[16]  Paul S Mischel,et al.  MR imaging correlates of survival in patients with high-grade gliomas. , 2005, AJNR. American journal of neuroradiology.

[17]  Jochen Herms,et al.  5‐Aminolevulinic Acid‐induced Protoporphyrin IX Levels in Tissue of Human Malignant Brain Tumors , 2010, Photochemistry and photobiology.

[18]  K. Fujii,et al.  Fluorescence diagnosis of tumor cells in hemangioblastoma cysts with 5-aminolevulinic acid. , 2010, Journal of neurosurgery.

[19]  M. Berger,et al.  The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. , 1999, Surgical neurology.

[20]  Sachio Suzuki,et al.  Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. , 2007, Neurologia medico-chirurgica.

[21]  J. Henson,et al.  Brain Tumor Imaging in Clinical Trials , 2008, American Journal of Neuroradiology.

[22]  Veit Rohde,et al.  EXTENT OF RESECTION AND SURVIVAL IN GLIOBLASTOMA MULTIFORME: IDENTIFICATION OF AND ADJUSTMENT FOR BIAS , 2008, Neurosurgery.

[23]  Gabriele Schackert,et al.  Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. , 2008, Neuro-oncology.

[24]  S. Eicker,et al.  ALA-induced porphyrin accumulation in medulloblastoma and its use for fluorescence-guided surgery. , 2011, Central European neurosurgery.

[25]  Y. Kajimoto,et al.  FLUORESCENCE OF NON‐NEOPLASTIC, MAGNETIC RESONANCE IMAGING‐ENHANCING TISSUE BY 5‐AMINOLEVULINIC ACID: CASE REPORT , 2007, Neurosurgery.

[26]  Volker Seifert,et al.  Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. , 2011, The Lancet. Oncology.

[27]  K. Franz,et al.  Influence of iMRI-Guidance on the Extent of Resection and Survival of Patients with Glioblastoma Multiforme , 2010, Technology in cancer research & treatment.

[28]  Christopher Nimsky,et al.  Volumetric Assessment of Glioma Removal by Intraoperative High-field Magnetic Resonance Imaging , 2004, Neurosurgery.

[29]  Xiaoyao Fan,et al.  Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. , 2011, Journal of neurosurgery.

[30]  I. Nagata,et al.  USEFULNESS OF INTRAOPERATIVE PHOTODYNAMIC DIAGNOSIS USING 5‐AMINOLEVULINIC ACID FOR MENINGIOMAS WITH CRANIAL INVASION: TECHNICAL CASE REPORT , 2008, Neurosurgery.

[31]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[32]  R. Alday,et al.  Risk Factors Predicting Recurrence in Patients Operated on for Intracranial Meningioma. A Multivariate Analysis , 1999, Acta Neurochirurgica.

[33]  Xiaoyao Fan,et al.  Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. , 2011, Journal of neurosurgery.

[34]  Wei Huang,et al.  Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. , 2003, Journal of neurosurgery.

[35]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[36]  Kimito Yamada,et al.  Use of 5-aminolevulinic acid for the confirmation of deep-seated brain tumors during stereotactic biopsy. Report of 2 cases. , 2011, Journal of neurosurgery.

[37]  H Stepp,et al.  Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. , 2000, Journal of neurosurgery.

[38]  D. Prayer,et al.  5‐Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement , 2010, Cancer.

[39]  Keith D. Paulsen,et al.  δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. , 2011, Neuro-oncology.

[40]  G von Campe,et al.  5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. , 2008, Swiss medical weekly.

[41]  Sachio Suzuki,et al.  Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study , 2007, Brain Tumor Pathology.

[42]  A. Koch,et al.  Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas , 2009, Acta Neurochirurgica.

[43]  M. Idoate,et al.  Pathological characterization of the glioblastoma border as shown during surgery using 5‐aminolevulinic acid‐induced fluorescence , 2011, Neuropathology : official journal of the Japanese Society of Neuropathology.

[44]  Michael Sabel,et al.  Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[45]  Henry Brem,et al.  Independent association of extent of resection with survival in patients with malignant brain astrocytoma. , 2009, Journal of neurosurgery.