Noisy Optimization: Convergence with a Fixed Number of Resamplings

It is known that evolution strategies in continuous domains might not converge in the presence of noise [3, 14]. It is also known that, under mild assumptions, and using an increasing number of resamplings, one can mitigate the effect of additive noise [4] and recover convergence. We show new sufficient conditions for the convergence of an evolutionary algorithm with constant number of resamplings; in particular, we get fast rates (log-linear convergence) provided that the variance decreases around the optimum slightly faster than in the so-called multiplicative noise model.

[1]  Anne Auger,et al.  Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule , 2013, ArXiv.

[2]  Olivier Teytaud,et al.  Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies , 2005, Artificial Evolution.

[3]  Hans-Georg Beyer,et al.  A general noise model and its effects on evolution strategy performance , 2006, IEEE Transactions on Evolutionary Computation.

[4]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[5]  Ohad Shamir,et al.  On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization , 2012, COLT.

[6]  F. Downton Stochastic Approximation , 1969, Nature.

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  V. Fabian Stochastic Approximation of Minima with Improved Asymptotic Speed , 1967 .

[9]  Anne Auger,et al.  Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments , 2011, Algorithmica.

[10]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[11]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[12]  Christian Igel,et al.  Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search , 2009, ICML '09.

[13]  Olivier Teytaud,et al.  Log-log Convergence for Noisy Optimization , 2013, Artificial Evolution.

[14]  Rémi Coulom,et al.  CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning , 2011, ACG.

[15]  Olivier Teytaud,et al.  Noisy optimization complexity under locality assumption , 2013, FOGA XII '13.

[16]  Olivier Teytaud,et al.  Lower Bounds for Evolution Strategies Using VC-Dimension , 2008, PPSN.

[17]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[18]  Hung Chen Lower Rate of Convergence for Locating a Maximum of a Function , 1988 .