Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris.

[1]  Hamid Mobasheri,et al.  Effects of trehalose and sorbitol on the activity and structure of Pseudomonas cepacia lipase: spectroscopic insight. , 2011, International journal of biological macromolecules.

[2]  D. Stelzner,et al.  Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells , 2011, Experimental Neurology.

[3]  E. Bradbury,et al.  Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury , 2011, Brain Research Bulletin.

[4]  Xiaoyan Dong,et al.  Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations. , 2010, The Journal of chemical physics.

[5]  R. Bellamkonda,et al.  Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury , 2009, Proceedings of the National Academy of Sciences.

[6]  J. Fawcett,et al.  Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation , 2009, Nature Neuroscience.

[7]  S. Uribe-Carvajal,et al.  Trehalose-mediated thermal stabilization of glucose oxidase from Aspergillus niger. , 2009, Journal of biotechnology.

[8]  H. Naderi-manesh,et al.  Co-solvent effects on structure and function properties of savinase: solvent-induced thermal stabilization. , 2009, International journal of biological macromolecules.

[9]  R. Sasisekharan,et al.  Recombinant Expression, Purification, and Biochemical Characterization of Chondroitinase ABC II from Proteus vulgaris* , 2009, Journal of Biological Chemistry.

[10]  D. Otzen,et al.  Thermodynamics and mechanism of cutinase stabilization by trehalose , 2008, Biopolymers.

[11]  J. D. del Río,et al.  Overcoming chondroitin sulphate proteoglycan inhibition of axon growth in the injured brain: lessons from chondroitinase ABC. , 2007, Current pharmaceutical design.

[12]  D. Howland,et al.  Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans , 2007, Journal of neuroscience research.

[13]  J. Udgaonkar,et al.  Diffusional barrier in the unfolding of a small protein. , 2007, Journal of molecular biology.

[14]  S. McMahon,et al.  Chondroitinase ABC Promotes Sprouting of Intact and Injured Spinal Systems after Spinal Cord Injury , 2006, The Journal of Neuroscience.

[15]  R. Sasisekharan,et al.  Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. , 2005, The Biochemical journal.

[16]  P. Hünenberger,et al.  Trehalose–protein interaction in aqueous solution , 2004, Proteins.

[17]  R. Bhat,et al.  Why Is Trehalose an Exceptional Protein Stabilizer? , 2003, Journal of Biological Chemistry.

[18]  G. Feller,et al.  Activity-Stability Relationships in Extremophilic Enzymes* , 2003, The Journal of Biological Chemistry.

[19]  James W. Fawcett,et al.  Chondroitinase ABC promotes functional recovery after spinal cord injury , 2002, Nature.

[20]  J. B. Jones,et al.  Chemical modification of enzymes for enhanced functionality. , 1999, Current opinion in biotechnology.

[21]  K. Horie,et al.  Two Distinct Chondroitin Sulfate ABC Lyases , 1997, The Journal of Biological Chemistry.

[22]  S. N. Timasheff,et al.  The thermodynamic mechanism of protein stabilization by trehalose. , 1997, Biophysical chemistry.

[23]  C. O. Fágáin,et al.  Understanding and increasing protein stability. , 1995, Biochimica et biophysica acta.

[24]  P. Belton,et al.  IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme , 1994, Biopolymers.

[25]  V. V. Mozhaev Mechanism-based strategies for protein thermostabilization. , 1993, Trends in biotechnology.

[26]  J. Silver,et al.  Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  J. Carpenter,et al.  An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. , 1989, Biochemistry.

[28]  P. Gacesa Alginate‐modifying enzymes , 1987 .

[29]  T. Arakawa,et al.  Stabilization of protein structure by sugars. , 1982, Biochemistry.

[30]  J. Lee,et al.  The stabilization of proteins by sucrose. , 1981, The Journal of biological chemistry.

[31]  C A Ghiron,et al.  Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. , 1976, Biochemistry.

[32]  T. Yamagata,et al.  Purification and properties of bacterial chondroitinases and chondrosulfatases. , 1968, The Journal of biological chemistry.

[33]  C. Ó’Fágáin,et al.  Engineering protein stability. , 2011, Methods in molecular biology.

[34]  J. Fawcett Molecular control of brain plasticity and repair. , 2009, Progress in brain research.

[35]  S. Uribe,et al.  Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity , 2004, Molecular and Cellular Biochemistry.

[36]  R. Asher,et al.  Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. , 2001, Progress in brain research.

[37]  R. Langer,et al.  Enzymatic degradation of glycosaminoglycans. , 1995, Critical reviews in biochemistry and molecular biology.

[38]  J T Yang,et al.  Calculation of protein conformation from circular dichroism. , 1986, Methods in enzymology.