Photochemical Ring Slippage of Bis(pentafluorophenyl)titanocene: Reaction kinetics and matrix isolation of the primary photoproduct

Laser flash photolysis and matrix-isolation techniques were applied to elucidate the photochemistry of the orange complex bis(pentafluorophenyl)titanocene ( = bis(η5-cyclopentadienyl)bis(pentafluorophenyl)titanium- (IV), Cp2TiIV{C6F5}2, Cp = η5-C5H5, 1) which is used as a polymerization photo-initiator. The primary photo-reaction of 1 is the formation of a highly reactive blue isomer X with unit quantum yield. In carefully dried and degassed benzene solution, the photoisomer X rearranges to starting material 1 with a first-order reaction, k = 5 · 103 s−1 at room temperature. X is highly reactive towards H2O, MeOH, acetone, MeCN, MeNO2, butane-1,4-diyl diacrylate, 2,2,6,6-tetramethylpiperidine N-oxide, CO, O2, and N2; absolute bimolecular rate constants range from 106 to 109M−1 · s−1. The primary photoisomerization 1X is tentatively ascribed to a cyclopentadienyl ring slippage from η5 to a lower hapticity, a process that opens up coordinative unsaturation.

[1]  E. Vitz,et al.  Photochemical reactions of bis(η5-cyclopentadienyl)- titanium dichloride , 1976 .

[2]  K. Meier,et al.  Synthetic and metal organic photochemistry in industry , 1986 .

[3]  H. Gray,et al.  Photochemistry of titanocene(IV) derivatives , 1974 .

[4]  K. Sonogashira,et al.  The Homogeneous Hydrogenation of Acetylenes by Dicyclopentadienyltitaniumdicarbonyl , 1966 .

[5]  J. Wirz Spectroscopic and kinetic investigations of conjugated biradical intermediates , 1984 .

[6]  Ian Carmichael,et al.  Triplet-triplet absorption spectra of organic molecules in condensed phases , 1986 .

[7]  F. Stone,et al.  Pentafluorophenyl derivatives of transition metals , 1964 .

[8]  J. Dilworth,et al.  Recent advances in the chemistry of nitrogen fixation , 1978 .

[9]  J. Frijns,et al.  Photogeneration of reactive titanium and zirconium species: a CIDNP study , 1981 .

[10]  J. L. Calderon,et al.  Stereochemically nonrigid organometallic molecules. XXVII. Fluxional behavior of tetra(cyclopentadienyl)titanium , 1971 .

[11]  G. Gauglitz,et al.  Chemical actinometry in the UV by azobenzene in concentrated solution: A convenient method , 1985 .

[12]  C. H. Brubaker,et al.  Photolytic cyclopentadienyl ligand exchange in selected systems , 1977 .

[13]  E. Mintz,et al.  Photochemical investigations of some DI-η5-cyclopentadienyldiaryltitanium compounds☆ , 1978 .

[14]  J. Wirz,et al.  Photochemistry of phenyl azide: the role of singlet and triplet phenylnitrene as transient intermediates , 1986 .

[15]  H. Alt,et al.  Photochemical investigations of di-η5-cyclopentadienyldimethyltitanium and deuterated analogs , 1977 .

[16]  H. Tung,et al.  Photochemical decomposition of (diphenyl)bis(η5-cyclopentadienyl) titanium, (diphenyl)bis(η5-pentamethylcyclopentadienyl) titanium and the zirconium analogs , 1981 .

[17]  H. Alt,et al.  PHOTOCHEMICAL STUDIES ON ORGANIC DERIVATIVES OF TITANIUM, ZIRCONIUM, AND HAFNIUM * , 1977 .

[18]  C. Casey,et al.  Ring-slippage chemistry of transition metal cyclopentadienyl and indenyl complexes , 1987 .

[19]  Malcolm L. H. Green Studies on synthesis, mechanism and reactivity of some organo-molybdenum and -tungsten compounds , 1978 .

[20]  M. Karpasas,et al.  Active Sites Structure and Mechanism of Stereospecific Polymerization of α-Olefins and Dienes Employing Ziegler-Natta Catalysts , 1987 .

[21]  C. H. Brubaker,et al.  Photolysis of titanocene dichloride , 1979 .

[22]  G. Geoffroy,et al.  Photochemistry of AlkyI, Alkylidene, and Alkylidyne Complexes of the Transition Metals , 1985 .

[23]  E. E. Tamelen Design and development of an organic-inorganic system for the chemical modification of molecular nitrogen under mild conditions , 1970 .

[24]  G. Gauglitz,et al.  Photokinetische Grundlagen moderner chemischer Aktinometer , 1984 .

[25]  J. Armor,et al.  Chemistry of Titanocene and Zirconocene , 1981 .