Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria.
暂无分享,去创建一个
[1] P. Schleyer,et al. Implications of molecular orbital symmetries and energies for the electron delocalization of inorganic clusters. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.
[2] Hongming Wang,et al. The conversion among various B4C clusters: a density functional theoretical study. , 2007, The journal of physical chemistry. A.
[3] P. Schleyer,et al. Myriad planar hexacoordinate carbon molecules inviting synthesis. , 2007, Journal of the American Chemical Society.
[4] P. Schleyer,et al. Aromaticity of tri- and tetranuclear metal-carbonyl clusters based on magnetic criteria. , 2007, Chemistry.
[5] Anastassia N. Alexandrova,et al. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .
[6] Y. Tobe,et al. Molecular loops and belts. , 2006, Chemical reviews.
[7] A. Alexandrova,et al. Theoretical study of hydrogenation of the doubly aromatic B7− cluster , 2006, Journal of molecular modeling.
[8] M. Alcamí,et al. Fragmentation of small neutral carbon clusters , 2006 .
[9] Wei An,et al. Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-. , 2006, The Journal of chemical physics.
[10] P. Schleyer,et al. Which NICS aromaticity index for planar pi rings is best? , 2006, Organic letters.
[11] Wei Chen,et al. Li3-O-Li3 molecule: a metal-nonmetal-metal sandwichlike compound with a distending electron cloud. , 2005, The Journal of chemical physics.
[12] Clémence Corminboeuf,et al. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.
[13] Alexander I Boldyrev,et al. All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.
[14] Toshimasa Ishida,et al. Aromaticity of planar boron clusters confirmed. , 2005, Journal of the American Chemical Society.
[15] A. E. Boguslavskiy,et al. Gas-phase electronic spectra of C18 and C22 rings. , 2005, The Journal of chemical physics.
[16] Roald Hoffmann,et al. Planar and pyramidal tetracoordinate carbon in organoboron compounds. , 2005, The Journal of organic chemistry.
[17] V. Baranovski. Electron structure, geometry and thermochemistry of the cyclic carbon clusters Cn (n = 8, 10, 12) , 2005 .
[18] G. Burley. Trannulenes with "in-plane" aromaticity: candidates for harvesting light energy. , 2005, Angewandte Chemie.
[19] Glenn A. Burley. Trannulene mit “in‐plane”‐Aromatizität: Elektronenacceptoren zum Speichern von Lichtenergie , 2005 .
[20] G. Frenking,et al. Aromatic boron wheels with more than one carbon atom in the center: C2B8, C3B9(3+), and C5B11+. , 2005, Angewandte Chemie.
[21] Taizoon Canteenwala,et al. Intense near-infrared optical absorbing emerald green [60]fullerenes. , 2005, Journal of the American Chemical Society.
[22] Lai‐Sheng Wang,et al. Multiple aromaticity and antiaromaticity in silicon clusters. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.
[23] Anastassia N. Alexandrova,et al. Electronic Structure, Isomerism, and Chemical Bonding in B7 - and B7 , 2004 .
[24] G. Seifert,et al. Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components , 2004 .
[25] Anastassia N Alexandrova,et al. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.
[26] Jun Li,et al. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.
[27] G. Seifert,et al. Analysis of Aromatic Delocalization: Individual Molecular Orbital Contributions to Nucleus-Independent Chemical Shifts , 2003 .
[28] W. Massa,et al. Dianions of tetraboranes(4): puckered aromatic four-membered rings and their reactions with conservation of aromaticity. , 2003, Angewandte Chemie.
[29] A. Berndt,et al. Dianionen von Tetraboranen(4): gefaltete aromatische Vierringe und ihre Reaktionen unter Erhaltung der Aromatizität , 2003 .
[30] W. Massa,et al. A highly reactive triboracyclobutane and its dianion: Two-electron homoaromatics with nonclassical and classical σ skeletons , 2003 .
[31] T. Momose,et al. Preferential formation of neutral C10 upon laser vaporized graphite in He gas as studied by photoionization mass spectroscopy with 10.5 eV photons , 2003 .
[32] P. Schleyer,et al. How Aromatic Are Large (4n + 2)π Annulenes? , 2003 .
[33] B. Silvi,et al. ELF Analysis of Out-of-Plane Aromaticity and In-Plane Homoaromaticity in Carbo[N]annulenes and [N]Pericyclynes , 2003 .
[34] W. Massa,et al. Two-electron aromatics containing three and four adjacent boron atoms , 2003 .
[35] Zhi‐Xiang Wang,et al. Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles. , 2002, Angewandte Chemie.
[36] A. Berndt,et al. Triboracyclopropanate: Zweielektronen‐Doppelaromaten mit sehr kurzen B‐B‐Abständen , 2002 .
[37] W. Massa,et al. Triboracyclopropanates: two-electron double aromatic compounds with very short B-B distances. , 2002, Angewandte Chemie.
[38] N. L. Allinger,et al. Resurrection of neutral tris-homoaromaticity. , 2002, The Journal of organic chemistry.
[39] A. Berndt,et al. Aromatische Borane mit planar-tetrakoordinierten Boratomen und sehr kurzen B-B-Abständen Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. , 2002 .
[40] W. Massa,et al. Aromatic boranes with planar-tetracoordinate boron atoms and very short B--B distances. , 2002, Angewandte Chemie.
[41] P. Fowler,et al. Selection rules for ring currents in radial π systems: trannulene substructures in hydrogenated fullerene cages , 2002 .
[42] A. Katritzky,et al. To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.
[43] P. Fowler,et al. Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic pi systems. , 2001, Chemical communications.
[44] N Vast,et al. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra. , 2001, Physical review letters.
[45] P. Hitchcock,et al. The Remarkable Stable Emerald Green C60 F15 [CBr(CO2 Et)2 ]3 : The First [60]Fullerene That Is also the First [18]Trannulene. , 2001, Angewandte Chemie.
[46] T. Schirmeister. Book Review: Medicinal Chemistry. An Introduction. Von Gareth Thomas , 2001 .
[47] Zhi‐Xiang Wang,et al. Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons , 2001, Science.
[48] H. Kenttämaa,et al. A Fourier-transform ion cyclotron resonance study of the 3,5-didehydrophenyl cation , 2001, Journal of the American Society for Mass Spectrometry.
[49] J. I. Brand,et al. Chemical vapor deposition of boron carbide , 2001 .
[50] P. Schleyer,et al. A new strategy to achieve perfectly planar carbon tetracoordination. , 2001 .
[51] Erich Steiner,et al. Counter-Rotating Ring Currents in Coronene and Corannulene. , 2001, Angewandte Chemie.
[52] L. W. Jenneskens,et al. Gegenläufige Ringströme in Coronen und Corannulen , 2001 .
[53] K. Exner,et al. Planar hexacoordinate carbon: a viable possibility. , 2000, Science.
[54] J. Heinze,et al. Cyclic In-Plane Electron Delocalization (σ-Bishomoaromaticity) in 4N/5e Radical Anions and 4N/6e DianionsGeneration, Structures, Properties, Ion-Pairing, and Calculations , 2000 .
[55] P. Fowler,et al. Ring currents in six-membered heterocycles: the diazaborinines (CH)2B2N2 , 2000 .
[56] Mitás,et al. Electron correlation in C(4N+2) carbon rings: aromatic versus dimerized structures , 2000, Physical review letters.
[57] Y. Okamoto,et al. Second-order Jahn-Teller effect on carbon 4N+2 member ring clusters , 1999 .
[58] A. D. Corso,et al. Atomic Structure and Vibrational Properties of Icosahedral B 4 C Boron Carbide , 1999, cond-mat/9909182.
[59] P. Schleyer,et al. In-Plane Aromaticity in 1,3-Dipolar Cycloadditions. Solvent Effects, Selectivity, and Nucleus-Independent Chemical Shifts , 1999 .
[60] Iñaki Morao,et al. A Simple Ring Current Model for Describing In-Plane Aromaticity in Pericyclic Reactions. , 1999, The Journal of organic chemistry.
[61] R. O. Jones. Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters , 1999 .
[62] J. D. Presilla-Márquez,et al. Vibrational spectra of cyclic C8 in solid argon1Presented in part at the 52nd Ohio State University International Symposium on Molecular Spectroscopy, Columbus, OH, 16–20 June 1997.1 , 1999 .
[63] J. Maier,et al. ELECTRONIC ABSORPTION SPECTRA OF BC, BC-, BC2, AND BC-2 IN NEON MATRICES , 1998 .
[64] J. D. Presilla-Márquez,et al. Vibrational spectra of linear BC3 and linear B2C2 in argon at 10 K , 1998 .
[65] D. Emin,et al. Large Enhancement of Boron Carbides' Seebeck Coefficients through Vibrational Softening , 1998 .
[66] Paul von Ragué Schleyer,et al. From Dodecahedrapentaene to the “[n]Trannulenes”. A New In-Plane Aromatic Family , 1998 .
[67] S. Ulrich,et al. Subplantation effect in magnetron sputtered superhard boron carbide thin films , 1998 .
[68] S. Louie,et al. Enhancement of surface hardness: Boron on Diamond (111) , 1998 .
[69] Iñaki Morao,et al. In-Plane Aromaticity in 1,3-Dipolar Cycloadditions , 1997 .
[70] J. D. Presilla-Márquez,et al. Vibrational spectra of cyclic C6 in solid argon , 1997 .
[71] Frank Weinhold,et al. Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations , 1997 .
[72] S. Suzuki,et al. Neutral carbon cluster distribution upon laser vaporization , 1997 .
[73] P. Schleyer,et al. ARE THE MOST STABLE FUSED HETEROBICYCLES THE MOST AROMATIC , 1996 .
[74] P. V. R. Schleyer,et al. Haben die stabilsten anellierten Heterobicyclen auch den stärksten aromatischen Charakter , 1996 .
[75] M. Kappes,et al. Surface impact induced shattering of C6. Detection of small Cm fragments by negative surface ionization , 1996 .
[76] Paul von Ragué Schleyer,et al. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.
[77] Peter R. Taylor,et al. Structure and Vibrations of Small Carbon Clusters from Coupled-Cluster Calculations , 1996 .
[78] Jan M. L. Martin,et al. Structure and relative energetics of C2n+1 (n = 2−7) carbon clusters using coupled cluster and hybrid density functional methods , 1996 .
[79] A. McKinley,et al. An electron spin resonance investigation of the 12C11B12C, 12C11B13C, and 13C11B13C radicals in neon, argon, and krypton matrices: Comparison with ab initio calculations , 1996 .
[80] Haijun Jiao,et al. What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..
[81] Jan M. L. Martin,et al. Structure and vibrational spectra of carbon clusters Cn (n = 2–10, 12, 14, 16, 18) using density functional theory including exact exchange contributions , 1995 .
[82] J. Chandrasekhar,et al. Double Aromaticity in the 3,5-Dehydrophenyl Cation and in Cyclo[6]carbon , 1994 .
[83] Bernd Engels,et al. Ab initio study of the energy difference between the cyclic and linear forms of the C6 molecule , 1994 .
[84] Hans Peter Lüthi,et al. The molecular structure of C6: A theoretical investigation , 1994 .
[85] L. Adamowicz,et al. Inversion of the C8 non-planar ring , 1994 .
[86] P. Taylor,et al. Ab initio study of the molecules BC and B2C , 1994 .
[87] Mikhail N. Glukhovtsev,et al. Aromaticity and Antiaromaticity: Electronic and Structural Aspects , 1994 .
[88] M. Bowers,et al. C+7 is cyclic: experimental evidence , 1993 .
[89] P. Taylor,et al. Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BC2 , 1993 .
[90] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[91] L. Adamowicz,et al. Is the C8 ring nonplanar , 1992 .
[92] J. Almlöf,et al. The electronic and molecular structure of carbon clusters: C8 and C10 , 1992 .
[93] R. Bartlett,et al. The nature of monocyclic C10. A theoretical investigation using coupled-cluster methods☆ , 1992 .
[94] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[95] A. Ray,et al. An ab initio study of H chemisorption on Li clusters in fcc (110) and fcc (111) symmetries , 1991 .
[96] W. T. Fernando,et al. Fourier transform emission spectroscopy: The B 4Σ−–X 4Σ− transition of BC , 1990 .
[97] H. Schaefer,et al. Carbon clusters: The structure of C10 studied with configuration interaction methods , 1990 .
[98] P. Giannozzi,et al. Low-temperature structures of C4 and C10 from the Car—Parrinello method: singlet states , 1990 .
[99] W. Krätschmer,et al. Solid C60: a new form of carbon , 1990, Nature.
[100] N. Oliphant,et al. Coupled cluster calculations for the BC molecule using numerical correlation orbitals , 1990 .
[101] William Weltner,et al. Carbon molecules, ions, and clusters , 1989 .
[102] E. Davidson,et al. Electron spin resonance investigations of 11B12C, 11B13C, and 10B12C in neon, argon, and krypton matrices at 4 K: Comparison with theoretical results , 1989 .
[103] H. Dietze,et al. Cluster ions in the laser mass spectra of boron carbide , 1988 .
[104] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[105] R. Buenker,et al. Theoretical study of the properties of BC and its positive ion in their ground and excited electronic states , 1987 .
[106] Krishnan Raghavachari,et al. Structure, stability, and fragmentation of small carbon clusters , 1987 .
[107] J. Pople,et al. Structures of small carbon clusters: Cyclic ground state of C6 , 1986 .
[108] P. Schleyer,et al. In-plane aromaticity and trishomoaromaticity: a computational evaluation , 1986 .
[109] S. C. O'brien,et al. C60: Buckminsterfullerene , 1985, Nature.
[110] R. Freeman,et al. Negative and positive cluster ions of carbon and silicon , 1985 .
[111] Jena,et al. Physics of small metal clusters: Topology, magnetism, and electronic structure. , 1985, Physical review. B, Condensed matter.
[112] U. Jansson,et al. Chemical vapour deposition of boron carbides in the temperature range 1300–1500 K and at a reduced pressure , 1985 .
[113] Donald M. Cox,et al. Production and characterization of supersonic carbon cluster beams , 1984 .
[114] F. Hillenkamp,et al. Laser-induced cluster-ions from thin foils of metals and semiconductors , 1981 .
[115] F. Hillenkamp,et al. Laser-induced positive and negative molecular ions from thin carbon foils , 1979 .
[116] R. Zahradník,et al. Calculations of absolute values of equilibrium and rate constants. 9. MINDO/2 study of equilibrium carbon vapor , 1977 .
[117] R. Pearson,et al. Concerning jahn-teller effects. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[118] P. Joyes,et al. Secondary emission of molecular ions from light-element targets , 1973 .
[119] Y. Öhrn,et al. Natural Orbital Valence Shell CI Studies of Diatomic Molecules. II. Potential Energy Curves and Spectra of Boron Carbide , 1970 .
[120] W. Weltner,et al. ESR of the BS Molecule in Inert Matrices at 4°K , 1970 .
[121] H. T. Hall,et al. Group IV Analogs and High Pressure, High Temperature Synthesis of B2O , 1965 .
[122] H. Hintenberger,et al. Notizen: Die Periodizitäten in den Häufigkeitsverteilungen der positiv und negativ geladenen vielatomigen Kohlenstoffmolekülionen Cn+ und Cn- im Hochfrequenzfunken zwischen Graphitelektroden , 1963 .
[123] J. Drowart,et al. Vaporization of Compounds and Alloys at High Temperatures. Part 13. Mass Spectrometric Study of the Systems Boron-Carbon and Boron-Carbon-Silicon , 1963 .
[124] Kenneth S. Pitzer,et al. LARGE MOLECULES IN CARBON VAPOR , 1959 .
[125] Z. B. Güvenç,et al. Structure and Energetic of B n (n 2-12) Clusters: Electronic Structure Calculations , 2007 .
[126] M. Hofmann,et al. (π+σ)‐double aromatic and π,σ‐mixed aromatic boron compounds with two electrons delocalized over three centers , 2006 .
[127] S. Park. Structural and Bonding Trends among the B 7 C 1 1- ,B 6 C 2 , and B 5 C 3 1+ , 2005 .
[128] Pavel A. Troshin,et al. Synthese und Struktur des hoch chlorierten [60]Fullerens C60Cl30 mit trommelförmigem Kohlenstoffkäfig† , 2005 .
[129] Wenguo Xu,et al. Structure and stability of B8 clusters , 2005 .
[130] R. M. Minyaev,et al. Planar hexacoordinated boron in organoboron compounds: an ab initio study , 2001 .
[131] R. M. Minyaev,et al. Octacoordinated main-group element centres in a planar cyclic B8 environment: an ab initio study , 2001 .
[132] H. Rzepa,et al. Double aromaticity and anti-aromaticity in small carbon rings , 2000 .
[133] P. Rosmus,et al. Bound electronic states X1S+, a3? and A1? of C2B- , 1999 .
[134] C. Zhan,et al. Ab Initio Studies on the Structures, Vertical Electron Detachment Energies, and Fragmentation Energies of CnB-Clusters , 1997 .
[135] François Diederich,et al. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory , 1994 .
[136] S. Bach,et al. Determination of carbon cluster ionization potentials via charge transfer reactions , 1990 .
[137] Alexandru T. Balaban,et al. Annulenes, benzo-, hetero-, homo-derivatives and their valence isomers , 1987 .
[138] J. Chandrasekhar,et al. Double aromaticity: aromaticity in orthogonal planes. The 3,5-dehydrophenyl cation. , 1979 .
[139] Roald Hoffmann,et al. Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and cn , 1966 .
[140] R. Honig. MASS SPECTROMETRIC STUDY OF THE MOLECULAR SUBLIMATION OF GRAPHITE , 1954 .
[141] M. Dewar,et al. A molecular-orbital theory of organic chemistry. Part VII. The additivity of bond energies in unconjugated systems , 1954 .
[142] Raymond R. Ridgway. Boron Carbide A New Crystalline Abrasive and Wear‐Resisting Product , 1934 .