Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria.

The double-aromatic character of selected monocyclic carbon, boron, and borocarbon rings is demonstrated by refined nucleus-independent chemical shift (NICS) analyses involving the contributions of individual canonical MOs and their out-of-plane NICS tensor component (CMO-NICS(zz)). The double aromaticity considered results from two mutually orthogonal Hückel p AO frameworks in a single molecule. The familiar pi orbitals are augmented by the in-plane delocalization of electrons occupying sets of radial (rad) p orbitals. Such double aromaticity is present in B(3) (-), C(6)H(3) (+), C(6) (4+), C(4)B(4) (4+), C(6), C(5)B(2), C(4)B(4), C(2)B(8), B(10) (2-), B(12), C(10), C(9)B(2), C(8)B(4), C(7)B(6), C(6)B(8), and C(14). Monocyclic C(8) and C(12) are doubly antiaromatic, as both the orthogonal pi and radial Hückel sets are paratropic. Planar C(7) and C(9) monocycles have mixed aromatic (pi) and antiaromatic (radial) systems.

[1]  P. Schleyer,et al.  Implications of molecular orbital symmetries and energies for the electron delocalization of inorganic clusters. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Hongming Wang,et al.  The conversion among various B4C clusters: a density functional theoretical study. , 2007, The journal of physical chemistry. A.

[3]  P. Schleyer,et al.  Myriad planar hexacoordinate carbon molecules inviting synthesis. , 2007, Journal of the American Chemical Society.

[4]  P. Schleyer,et al.  Aromaticity of tri- and tetranuclear metal-carbonyl clusters based on magnetic criteria. , 2007, Chemistry.

[5]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[6]  Y. Tobe,et al.  Molecular loops and belts. , 2006, Chemical reviews.

[7]  A. Alexandrova,et al.  Theoretical study of hydrogenation of the doubly aromatic B7− cluster , 2006, Journal of molecular modeling.

[8]  M. Alcamí,et al.  Fragmentation of small neutral carbon clusters , 2006 .

[9]  Wei An,et al.  Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-. , 2006, The Journal of chemical physics.

[10]  P. Schleyer,et al.  Which NICS aromaticity index for planar pi rings is best? , 2006, Organic letters.

[11]  Wei Chen,et al.  Li3-O-Li3 molecule: a metal-nonmetal-metal sandwichlike compound with a distending electron cloud. , 2005, The Journal of chemical physics.

[12]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[13]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[14]  Toshimasa Ishida,et al.  Aromaticity of planar boron clusters confirmed. , 2005, Journal of the American Chemical Society.

[15]  A. E. Boguslavskiy,et al.  Gas-phase electronic spectra of C18 and C22 rings. , 2005, The Journal of chemical physics.

[16]  Roald Hoffmann,et al.  Planar and pyramidal tetracoordinate carbon in organoboron compounds. , 2005, The Journal of organic chemistry.

[17]  V. Baranovski Electron structure, geometry and thermochemistry of the cyclic carbon clusters Cn (n = 8, 10, 12) , 2005 .

[18]  G. Burley Trannulenes with "in-plane" aromaticity: candidates for harvesting light energy. , 2005, Angewandte Chemie.

[19]  Glenn A. Burley Trannulene mit “in‐plane”‐Aromatizität: Elektronenacceptoren zum Speichern von Lichtenergie , 2005 .

[20]  G. Frenking,et al.  Aromatic boron wheels with more than one carbon atom in the center: C2B8, C3B9(3+), and C5B11+. , 2005, Angewandte Chemie.

[21]  Taizoon Canteenwala,et al.  Intense near-infrared optical absorbing emerald green [60]fullerenes. , 2005, Journal of the American Chemical Society.

[22]  Lai‐Sheng Wang,et al.  Multiple aromaticity and antiaromaticity in silicon clusters. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Anastassia N. Alexandrova,et al.  Electronic Structure, Isomerism, and Chemical Bonding in B7 - and B7 , 2004 .

[24]  G. Seifert,et al.  Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components , 2004 .

[25]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[26]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[27]  G. Seifert,et al.  Analysis of Aromatic Delocalization: Individual Molecular Orbital Contributions to Nucleus-Independent Chemical Shifts , 2003 .

[28]  W. Massa,et al.  Dianions of tetraboranes(4): puckered aromatic four-membered rings and their reactions with conservation of aromaticity. , 2003, Angewandte Chemie.

[29]  A. Berndt,et al.  Dianionen von Tetraboranen(4): gefaltete aromatische Vierringe und ihre Reaktionen unter Erhaltung der Aromatizität , 2003 .

[30]  W. Massa,et al.  A highly reactive triboracyclobutane and its dianion: Two-electron homoaromatics with nonclassical and classical σ skeletons , 2003 .

[31]  T. Momose,et al.  Preferential formation of neutral C10 upon laser vaporized graphite in He gas as studied by photoionization mass spectroscopy with 10.5 eV photons , 2003 .

[32]  P. Schleyer,et al.  How Aromatic Are Large (4n + 2)π Annulenes? , 2003 .

[33]  B. Silvi,et al.  ELF Analysis of Out-of-Plane Aromaticity and In-Plane Homoaromaticity in Carbo[N]annulenes and [N]Pericyclynes , 2003 .

[34]  W. Massa,et al.  Two-electron aromatics containing three and four adjacent boron atoms , 2003 .

[35]  Zhi‐Xiang Wang,et al.  Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles. , 2002, Angewandte Chemie.

[36]  A. Berndt,et al.  Triboracyclopropanate: Zweielektronen‐Doppelaromaten mit sehr kurzen B‐B‐Abständen , 2002 .

[37]  W. Massa,et al.  Triboracyclopropanates: two-electron double aromatic compounds with very short B-B distances. , 2002, Angewandte Chemie.

[38]  N. L. Allinger,et al.  Resurrection of neutral tris-homoaromaticity. , 2002, The Journal of organic chemistry.

[39]  A. Berndt,et al.  Aromatische Borane mit planar-tetrakoordinierten Boratomen und sehr kurzen B-B-Abständen Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. , 2002 .

[40]  W. Massa,et al.  Aromatic boranes with planar-tetracoordinate boron atoms and very short B--B distances. , 2002, Angewandte Chemie.

[41]  P. Fowler,et al.  Selection rules for ring currents in radial π systems: trannulene substructures in hydrogenated fullerene cages , 2002 .

[42]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[43]  P. Fowler,et al.  Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic pi systems. , 2001, Chemical communications.

[44]  N Vast,et al.  Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra. , 2001, Physical review letters.

[45]  P. Hitchcock,et al.  The Remarkable Stable Emerald Green C60 F15 [CBr(CO2 Et)2 ]3 : The First [60]Fullerene That Is also the First [18]Trannulene. , 2001, Angewandte Chemie.

[46]  T. Schirmeister Book Review: Medicinal Chemistry. An Introduction. Von Gareth Thomas , 2001 .

[47]  Zhi‐Xiang Wang,et al.  Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons , 2001, Science.

[48]  H. Kenttämaa,et al.  A Fourier-transform ion cyclotron resonance study of the 3,5-didehydrophenyl cation , 2001, Journal of the American Society for Mass Spectrometry.

[49]  J. I. Brand,et al.  Chemical vapor deposition of boron carbide , 2001 .

[50]  P. Schleyer,et al.  A new strategy to achieve perfectly planar carbon tetracoordination. , 2001 .

[51]  Erich Steiner,et al.  Counter-Rotating Ring Currents in Coronene and Corannulene. , 2001, Angewandte Chemie.

[52]  L. W. Jenneskens,et al.  Gegenläufige Ringströme in Coronen und Corannulen , 2001 .

[53]  K. Exner,et al.  Planar hexacoordinate carbon: a viable possibility. , 2000, Science.

[54]  J. Heinze,et al.  Cyclic In-Plane Electron Delocalization (σ-Bishomoaromaticity) in 4N/5e Radical Anions and 4N/6e DianionsGeneration, Structures, Properties, Ion-Pairing, and Calculations , 2000 .

[55]  P. Fowler,et al.  Ring currents in six-membered heterocycles: the diazaborinines (CH)2B2N2 , 2000 .

[56]  Mitás,et al.  Electron correlation in C(4N+2) carbon rings: aromatic versus dimerized structures , 2000, Physical review letters.

[57]  Y. Okamoto,et al.  Second-order Jahn-Teller effect on carbon 4N+2 member ring clusters , 1999 .

[58]  A. D. Corso,et al.  Atomic Structure and Vibrational Properties of Icosahedral B 4 C Boron Carbide , 1999, cond-mat/9909182.

[59]  P. Schleyer,et al.  In-Plane Aromaticity in 1,3-Dipolar Cycloadditions. Solvent Effects, Selectivity, and Nucleus-Independent Chemical Shifts , 1999 .

[60]  Iñaki Morao,et al.  A Simple Ring Current Model for Describing In-Plane Aromaticity in Pericyclic Reactions. , 1999, The Journal of organic chemistry.

[61]  R. O. Jones Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters , 1999 .

[62]  J. D. Presilla-Márquez,et al.  Vibrational spectra of cyclic C8 in solid argon1Presented in part at the 52nd Ohio State University International Symposium on Molecular Spectroscopy, Columbus, OH, 16–20 June 1997.1 , 1999 .

[63]  J. Maier,et al.  ELECTRONIC ABSORPTION SPECTRA OF BC, BC-, BC2, AND BC-2 IN NEON MATRICES , 1998 .

[64]  J. D. Presilla-Márquez,et al.  Vibrational spectra of linear BC3 and linear B2C2 in argon at 10 K , 1998 .

[65]  D. Emin,et al.  Large Enhancement of Boron Carbides' Seebeck Coefficients through Vibrational Softening , 1998 .

[66]  Paul von Ragué Schleyer,et al.  From Dodecahedrapentaene to the “[n]Trannulenes”. A New In-Plane Aromatic Family , 1998 .

[67]  S. Ulrich,et al.  Subplantation effect in magnetron sputtered superhard boron carbide thin films , 1998 .

[68]  S. Louie,et al.  Enhancement of surface hardness: Boron on Diamond (111) , 1998 .

[69]  Iñaki Morao,et al.  In-Plane Aromaticity in 1,3-Dipolar Cycloadditions , 1997 .

[70]  J. D. Presilla-Márquez,et al.  Vibrational spectra of cyclic C6 in solid argon , 1997 .

[71]  Frank Weinhold,et al.  Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations , 1997 .

[72]  S. Suzuki,et al.  Neutral carbon cluster distribution upon laser vaporization , 1997 .

[73]  P. Schleyer,et al.  ARE THE MOST STABLE FUSED HETEROBICYCLES THE MOST AROMATIC , 1996 .

[74]  P. V. R. Schleyer,et al.  Haben die stabilsten anellierten Heterobicyclen auch den stärksten aromatischen Charakter , 1996 .

[75]  M. Kappes,et al.  Surface impact induced shattering of C6. Detection of small Cm fragments by negative surface ionization , 1996 .

[76]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[77]  Peter R. Taylor,et al.  Structure and Vibrations of Small Carbon Clusters from Coupled-Cluster Calculations , 1996 .

[78]  Jan M. L. Martin,et al.  Structure and relative energetics of C2n+1 (n = 2−7) carbon clusters using coupled cluster and hybrid density functional methods , 1996 .

[79]  A. McKinley,et al.  An electron spin resonance investigation of the 12C11B12C, 12C11B13C, and 13C11B13C radicals in neon, argon, and krypton matrices: Comparison with ab initio calculations , 1996 .

[80]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[81]  Jan M. L. Martin,et al.  Structure and vibrational spectra of carbon clusters Cn (n = 2–10, 12, 14, 16, 18) using density functional theory including exact exchange contributions , 1995 .

[82]  J. Chandrasekhar,et al.  Double Aromaticity in the 3,5-Dehydrophenyl Cation and in Cyclo[6]carbon , 1994 .

[83]  Bernd Engels,et al.  Ab initio study of the energy difference between the cyclic and linear forms of the C6 molecule , 1994 .

[84]  Hans Peter Lüthi,et al.  The molecular structure of C6: A theoretical investigation , 1994 .

[85]  L. Adamowicz,et al.  Inversion of the C8 non-planar ring , 1994 .

[86]  P. Taylor,et al.  Ab initio study of the molecules BC and B2C , 1994 .

[87]  Mikhail N. Glukhovtsev,et al.  Aromaticity and Antiaromaticity: Electronic and Structural Aspects , 1994 .

[88]  M. Bowers,et al.  C+7 is cyclic: experimental evidence , 1993 .

[89]  P. Taylor,et al.  Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BC2 , 1993 .

[90]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[91]  L. Adamowicz,et al.  Is the C8 ring nonplanar , 1992 .

[92]  J. Almlöf,et al.  The electronic and molecular structure of carbon clusters: C8 and C10 , 1992 .

[93]  R. Bartlett,et al.  The nature of monocyclic C10. A theoretical investigation using coupled-cluster methods☆ , 1992 .

[94]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[95]  A. Ray,et al.  An ab initio study of H chemisorption on Li clusters in fcc (110) and fcc (111) symmetries , 1991 .

[96]  W. T. Fernando,et al.  Fourier transform emission spectroscopy: The B 4Σ−–X 4Σ− transition of BC , 1990 .

[97]  H. Schaefer,et al.  Carbon clusters: The structure of C10 studied with configuration interaction methods , 1990 .

[98]  P. Giannozzi,et al.  Low-temperature structures of C4 and C10 from the Car—Parrinello method: singlet states , 1990 .

[99]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[100]  N. Oliphant,et al.  Coupled cluster calculations for the BC molecule using numerical correlation orbitals , 1990 .

[101]  William Weltner,et al.  Carbon molecules, ions, and clusters , 1989 .

[102]  E. Davidson,et al.  Electron spin resonance investigations of 11B12C, 11B13C, and 10B12C in neon, argon, and krypton matrices at 4 K: Comparison with theoretical results , 1989 .

[103]  H. Dietze,et al.  Cluster ions in the laser mass spectra of boron carbide , 1988 .

[104]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[105]  R. Buenker,et al.  Theoretical study of the properties of BC and its positive ion in their ground and excited electronic states , 1987 .

[106]  Krishnan Raghavachari,et al.  Structure, stability, and fragmentation of small carbon clusters , 1987 .

[107]  J. Pople,et al.  Structures of small carbon clusters: Cyclic ground state of C6 , 1986 .

[108]  P. Schleyer,et al.  In-plane aromaticity and trishomoaromaticity: a computational evaluation , 1986 .

[109]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[110]  R. Freeman,et al.  Negative and positive cluster ions of carbon and silicon , 1985 .

[111]  Jena,et al.  Physics of small metal clusters: Topology, magnetism, and electronic structure. , 1985, Physical review. B, Condensed matter.

[112]  U. Jansson,et al.  Chemical vapour deposition of boron carbides in the temperature range 1300–1500 K and at a reduced pressure , 1985 .

[113]  Donald M. Cox,et al.  Production and characterization of supersonic carbon cluster beams , 1984 .

[114]  F. Hillenkamp,et al.  Laser-induced cluster-ions from thin foils of metals and semiconductors , 1981 .

[115]  F. Hillenkamp,et al.  Laser-induced positive and negative molecular ions from thin carbon foils , 1979 .

[116]  R. Zahradník,et al.  Calculations of absolute values of equilibrium and rate constants. 9. MINDO/2 study of equilibrium carbon vapor , 1977 .

[117]  R. Pearson,et al.  Concerning jahn-teller effects. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[118]  P. Joyes,et al.  Secondary emission of molecular ions from light-element targets , 1973 .

[119]  Y. Öhrn,et al.  Natural Orbital Valence Shell CI Studies of Diatomic Molecules. II. Potential Energy Curves and Spectra of Boron Carbide , 1970 .

[120]  W. Weltner,et al.  ESR of the BS Molecule in Inert Matrices at 4°K , 1970 .

[121]  H. T. Hall,et al.  Group IV Analogs and High Pressure, High Temperature Synthesis of B2O , 1965 .

[122]  H. Hintenberger,et al.  Notizen: Die Periodizitäten in den Häufigkeitsverteilungen der positiv und negativ geladenen vielatomigen Kohlenstoffmolekülionen Cn+ und Cn- im Hochfrequenzfunken zwischen Graphitelektroden , 1963 .

[123]  J. Drowart,et al.  Vaporization of Compounds and Alloys at High Temperatures. Part 13. Mass Spectrometric Study of the Systems Boron-Carbon and Boron-Carbon-Silicon , 1963 .

[124]  Kenneth S. Pitzer,et al.  LARGE MOLECULES IN CARBON VAPOR , 1959 .

[125]  Z. B. Güvenç,et al.  Structure and Energetic of B n (n 2-12) Clusters: Electronic Structure Calculations , 2007 .

[126]  M. Hofmann,et al.  (π+σ)‐double aromatic and π,σ‐mixed aromatic boron compounds with two electrons delocalized over three centers , 2006 .

[127]  S. Park Structural and Bonding Trends among the B 7 C 1 1- ,B 6 C 2 , and B 5 C 3 1+ , 2005 .

[128]  Pavel A. Troshin,et al.  Synthese und Struktur des hoch chlorierten [60]Fullerens C60Cl30 mit trommelförmigem Kohlenstoffkäfig† , 2005 .

[129]  Wenguo Xu,et al.  Structure and stability of B8 clusters , 2005 .

[130]  R. M. Minyaev,et al.  Planar hexacoordinated boron in organoboron compounds: an ab initio study , 2001 .

[131]  R. M. Minyaev,et al.  Octacoordinated main-group element centres in a planar cyclic B8 environment: an ab initio study , 2001 .

[132]  H. Rzepa,et al.  Double aromaticity and anti-aromaticity in small carbon rings , 2000 .

[133]  P. Rosmus,et al.  Bound electronic states X1S+, a3? and A1? of C2B- , 1999 .

[134]  C. Zhan,et al.  Ab Initio Studies on the Structures, Vertical Electron Detachment Energies, and Fragmentation Energies of CnB-Clusters , 1997 .

[135]  François Diederich,et al.  Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory , 1994 .

[136]  S. Bach,et al.  Determination of carbon cluster ionization potentials via charge transfer reactions , 1990 .

[137]  Alexandru T. Balaban,et al.  Annulenes, benzo-, hetero-, homo-derivatives and their valence isomers , 1987 .

[138]  J. Chandrasekhar,et al.  Double aromaticity: aromaticity in orthogonal planes. The 3,5-dehydrophenyl cation. , 1979 .

[139]  Roald Hoffmann,et al.  Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and cn , 1966 .

[140]  R. Honig MASS SPECTROMETRIC STUDY OF THE MOLECULAR SUBLIMATION OF GRAPHITE , 1954 .

[141]  M. Dewar,et al.  A molecular-orbital theory of organic chemistry. Part VII. The additivity of bond energies in unconjugated systems , 1954 .

[142]  Raymond R. Ridgway Boron Carbide A New Crystalline Abrasive and Wear‐Resisting Product , 1934 .