A parameter adaptive improved algorithm based on the GIW-PHD filter

The random matrix approach to extended objects tracking provides efficient estimation of both the states and the extensions. Then the Gaussian Inverse Wishart-Probability Hypothesis Density (GIW-PHD) filter in the random matrix framework is utilized to track multiple extended objects in the presence of clutter measurements and missed detections. In view of the invariant extension evolution model and neglected actual measurement noise for the original GIW-PHD filter, this paper adopts a dynamic evolution model and a reasonable measurement noise model. A suitable likelihood function is derived and the new recursive expressions are presented along with the necessary assumptions and approximations. Furthermore, a parameter adaptive improved algorithm based on the GIW-PHD filter is presented, that estimates model parameters adaptively. Simulation results show that estimation error of the parameter adaptive improved algorithm is lower than the original GIW-PHD filter, in the case of closely spaced objects, crossing and maneuvering.

[1]  X. R. Li,et al.  Tracking of extended object or target group using random matrix — Part II: Irregular object , 2012, 2012 15th International Conference on Information Fusion.

[2]  Christian Lundquist,et al.  Extended Target Tracking using a Gaussian-Mixture PHD Filter , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[3]  J.W. Koch,et al.  Bayesian approach to extended object and cluster tracking using random matrices , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Dietrich Fränken,et al.  Advances on tracking of extended objects and group targets using random matrices , 2009, 2009 12th International Conference on Information Fusion.

[5]  O. E. Drummond Tracking clusters and extended objects with multiple sensors , 1990, Defense + Commercial Sensing.

[6]  X. Rong Li,et al.  Tracking of Maneuvering Non-Ellipsoidal Extended Object or Target Group Using Random Matrix , 2014, IEEE Transactions on Signal Processing.

[7]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[8]  X. Rong Li,et al.  Tracking of extended object or target group using random matrix — Part I: New model and approach , 2012, 2012 15th International Conference on Information Fusion.

[9]  D. J. Salmond,et al.  Track maintenance using measurements of target extent , 2003 .

[10]  Uwe D. Hanebeck,et al.  Shape tracking of extended objects and group targets with star-convex RHMs , 2011, 14th International Conference on Information Fusion.

[11]  Borui Li,et al.  Model Parameter Adaption-Based Multi-Model Algorithm for Extended Object Tracking Using a Random Matrix , 2013, Sensors.

[12]  Jocelyn Chanussot,et al.  Converted measurements random matrix approach to extended target tracking using X-band marine radar data , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[13]  Borui Li,et al.  Extension of"Model Parameter Adaptive Approach of Extended Object Tracking Using Random Matrix" , 2013 .

[14]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[15]  Wolfgang Koch,et al.  Probabilistic tracking of multiple extended targets using random matrices , 2010, Defense + Commercial Sensing.

[16]  Karl Granström,et al.  Extended Object Tracking: Introduction, Overview and Applications , 2016, ArXiv.

[17]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[18]  Karl Granström,et al.  A phd Filter for Tracking Multiple Extended Targets Using Random Matrices , 2012, IEEE Transactions on Signal Processing.

[19]  Ronald P. S. Mahler,et al.  PHD filters for nonstandard targets, I: Extended targets , 2009, 2009 12th International Conference on Information Fusion.

[20]  Christian Lundquist,et al.  A Gaussian mixture PHD filter for extended target tracking , 2010, 2010 13th International Conference on Information Fusion.

[21]  X. R. Li,et al.  Extended target tracking using star-convex model with nonlinear inequality constraints , 2012, Proceedings of the 31st Chinese Control Conference.

[22]  Ba-Ngu Vo,et al.  The forward-backward Probability Hypothesis Density smoother , 2010, 2010 13th International Conference on Information Fusion.

[23]  Uwe D. Hanebeck,et al.  Extended object and group tracking with Elliptic Random Hypersurface Models , 2010, 2010 13th International Conference on Information Fusion.