Semideenite Programming in Combinatorial Optimization

We discuss the use of semidefinite programming for combinatorial optimization problems. The main topics covered include (i) the Lovász theta function and its applications to stable sets, perfect graphs, and coding theory, (ii) the automatic generation of strong valid inequalities, (iii) the maximum cut problem and related problems, and (iv) the embedding of finite metric spaces and its relationship to the sparsest cut problem.

[1]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[2]  V. Deineko,et al.  The Quadratic Assignment Problem: Theory and Algorithms , 1998 .

[3]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[4]  Franz Rendl,et al.  Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.

[5]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[6]  Franz Rendl,et al.  A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..

[7]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[10]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and the Lovász ϑ-function , 1997, Comb..

[11]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[12]  Ramesh Hariharan,et al.  Derandomizing semidefinite programming based approximation algorithms , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[13]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[14]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[15]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[16]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[17]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[18]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Alexander I. Barvinok,et al.  Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..

[20]  Howard J. Karloff,et al.  How good is the Goemans-Williamson MAX CUT algorithm? , 1996, STOC '96.

[21]  Qing Zhao Semidefinite programming for assignment and partitioning problems , 1998 .

[22]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  Giovanni Rinaldi,et al.  A branch-and-cut algorithm for the equicut problem , 1997, Math. Program..

[24]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[25]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[26]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[27]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[28]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[29]  Uri Zwick,et al.  Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems , 1999, STOC '99.

[30]  Ferenc Juhász,et al.  The asymptotic behaviour of lovász’ ϑ function for random graphs , 1982, Comb..

[31]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[32]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[33]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[35]  Franz Rendl,et al.  A computational study of graph partitioning , 1994, Math. Program..

[36]  Franz Rendl,et al.  Connections between semidefinite relaxations of the max-cut and stable set problems , 1997, Math. Program..

[37]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[38]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[39]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[40]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[41]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[42]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[43]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[44]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[45]  Uri Zwick,et al.  Finding almost-satisfying assignments , 1998, STOC '98.

[46]  Jon M. Kleinberg,et al.  The Lovász Theta Function and a Semidefinite Programming Relaxation of Vertex Cover , 1998, SIAM J. Discret. Math..

[47]  W. Haemers,et al.  Association schemes , 1996 .

[48]  Franz Rendl,et al.  Quadratic Knapsack Relaxations Using Cutting Planes , 1996, IPCO.

[49]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and Lovasz j-function , 1995, STOC '95.

[50]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .

[51]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[52]  Prasoon Tiwari,et al.  A problem that is easier to solve on the unit-cost algebraic RAM , 1992, J. Complex..

[53]  M. Fiedler Bounds for eigenvalues of doubly stochastic matrices , 1972 .

[54]  Alexander Schrijver,et al.  Relaxations of vertex packing , 1986, J. Comb. Theory B.

[55]  Uri Zwick,et al.  A 7/8-approximation algorithm for MAX 3SAT? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[56]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[57]  Robert J. McEliece,et al.  The Bounds of Delsarte and Lovász, and Their Applications to Coding Theory , 1979 .

[58]  Qing Zhao,et al.  An All-Inclusive Efficient Region of Updates for Least Change Secant Methods , 1995, SIAM J. Optim..

[59]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[60]  Y. Nesterov Quality of semidefinite relaxation for nonconvex quadratic optimization , 1997 .

[61]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[62]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[63]  B. Mohar,et al.  Eigenvalues in Combinatorial Optimization , 1993 .

[64]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[65]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[66]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[67]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[68]  Mario Szegedy,et al.  A note on the /spl theta/ number of Lovasz and the generalized Delsarte bound , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[69]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[70]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[71]  Charles Delorme,et al.  Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..