Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations

The aim of this paper is to propose a simple accelerated spectral gradient flow formulation for solving the Gross-Pitaevskii Equation (GPE) when computing the stationary states of Bose-Einstein Condensates. The new algorithm, based on the recent iPiano minimization algorithm [35], converges three to four times faster than the standard implicit gradient scheme. To support the method, we provide a complete numerical study for 1d-2d-3d GPEs, including rotation and dipolar terms.

[1]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[2]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[3]  C.-S. Chien,et al.  A spectral-Galerkin continuation method using Chebyshev polynomials for the numerical solutions of the Gross-Pitaevskii equation , 2011, J. Comput. Appl. Math..

[4]  Ionut Danaila,et al.  A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates , 2010, J. Comput. Phys..

[5]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..

[6]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[7]  Xavier Antoine,et al.  Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..

[8]  D. Baye,et al.  Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Succi,et al.  Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Rong Zeng,et al.  Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..

[11]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[12]  Qiang Du,et al.  Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001 .

[13]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[14]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[15]  C. Yuce,et al.  Off-axis vortex in a rotating dipolar Bose–Einstein condensate , 2010, 1005.3725.

[16]  Marco Caliari,et al.  GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations , 2013, Comput. Phys. Commun..

[17]  Yannick Seurin,et al.  Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.

[18]  Xavier Antoine,et al.  Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods , 2016, J. Comput. Phys..

[19]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[20]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[21]  W. Ketterle,et al.  Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.

[22]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[23]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[24]  Weizhu Bao,et al.  Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .

[25]  J Dalibard,et al.  Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.

[26]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[27]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[28]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[30]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations , 2015, Comput. Phys. Commun..

[31]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[32]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[33]  C.-S. Chien,et al.  A Two-Parameter Continuation Method for Rotating Two-Component Bose-Einstein Condensates in Optical Lattices , 2013 .

[34]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[35]  Edwards,et al.  Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[37]  A Gammal,et al.  Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  S. Adhikari Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms , 2000, cond-mat/0001361.

[39]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[40]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..