Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations
暂无分享,去创建一个
Christophe Besse | Xavier Antoine | Vittorio Rispoli | Romain Duboscq | X. Antoine | C. Besse | V. Rispoli | Romain Duboscq
[1] Dalibard,et al. Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.
[2] W. Bao,et al. Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.
[3] C.-S. Chien,et al. A spectral-Galerkin continuation method using Chebyshev polynomials for the numerical solutions of the Gross-Pitaevskii equation , 2011, J. Comput. Appl. Math..
[4] Ionut Danaila,et al. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates , 2010, J. Comput. Phys..
[5] Xavier Antoine,et al. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..
[6] Weizhu Bao,et al. Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .
[7] Xavier Antoine,et al. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..
[8] D. Baye,et al. Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] Succi,et al. Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] Rong Zeng,et al. Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..
[11] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[12] Qiang Du,et al. Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001 .
[13] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[14] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .
[15] C. Yuce,et al. Off-axis vortex in a rotating dipolar Bose–Einstein condensate , 2010, 1005.3725.
[16] Marco Caliari,et al. GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations , 2013, Comput. Phys. Commun..
[17] Yannick Seurin,et al. Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.
[18] Xavier Antoine,et al. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods , 2016, J. Comput. Phys..
[19] K. B. Davis,et al. Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.
[20] Weizhu Bao. Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..
[21] W. Ketterle,et al. Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.
[22] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[23] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[24] Weizhu Bao,et al. Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .
[25] J Dalibard,et al. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.
[26] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[27] Eric Cancès,et al. Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..
[28] Succi,et al. Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[29] Emmanuel J. Candès,et al. Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.
[30] Xavier Antoine,et al. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations , 2015, Comput. Phys. Commun..
[31] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[32] Ionut Danaila,et al. A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..
[33] C.-S. Chien,et al. A Two-Parameter Continuation Method for Rotating Two-Component Bose-Einstein Condensates in Optical Lattices , 2013 .
[34] Bradley,et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.
[35] Edwards,et al. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[36] W. Ketterle,et al. Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.
[37] A Gammal,et al. Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[38] S. Adhikari. Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms , 2000, cond-mat/0001361.
[39] Thomas Brox,et al. iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..
[40] Mechthild Thalhammer,et al. A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..