Re-sampling search: A seriously simple memetic approach with a high performance

In the fashion of the Ockham's Razor principle for Memetic Computing approaches, this paper proposes an extremely simple and yet very efficient algorithm composed of two operators. The proposed approach employs a deterministic local search operator that periodically perturbs by means of a stochastic search component. The perturbation occurs by re-sampling the initial solution within the decision space. The deterministic local search is stopped by means of a precision based criterion and started over by means of the stochastic re-sampling. Although the concept of multi-start local search is not new in the optimization environment the proposed algorithm is shown to be extremely efficient on a broad set of diverse problems and competitive with complex algorithms representing the-state-of-the-art in computational intelligence optimization.

[1]  Maoguo Gong,et al.  Baldwinian learning in clonal selection algorithm for optimization , 2010, Inf. Sci..

[2]  Zhen Ji,et al.  Towards a Memetic Feature Selection Paradigm [Application Notes] , 2010, IEEE Computational Intelligence Magazine.

[3]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[5]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[6]  Giovanni Iacca,et al.  Disturbed Exploitation compact Differential Evolution for limited memory optimization problems , 2011, Inf. Sci..

[7]  Francisco Herrera,et al.  Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems , 2011, Soft Comput..

[8]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[9]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[10]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[11]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[12]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[13]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[14]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[15]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[16]  Naim Dahnoun,et al.  Studies in Computational Intelligence , 2013 .

[17]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[18]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[19]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[20]  András György,et al.  Efficient Multi-Start Strategies for Local Search Algorithms , 2009, J. Artif. Intell. Res..

[21]  Francisco Herrera,et al.  MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization , 2010, IEEE Congress on Evolutionary Computation.

[22]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[23]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[24]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[25]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[27]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..

[28]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[29]  Maoguo Gong,et al.  Memetic algorithm for community detection in networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[31]  András György,et al.  Efficient Multi-start Strategies for Local Search Algorithms , 2009, ECML/PKDD.

[32]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[33]  Ruhul A. Sarker,et al.  Multi-operator based evolutionary algorithms for solving constrained optimization problems , 2011, Comput. Oper. Res..

[34]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[35]  Ruhul A. Sarker,et al.  An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems , 2013, IEEE Transactions on Industrial Informatics.

[36]  Giovanni Iacca,et al.  Ockham's Razor in memetic computing: Three stage optimal memetic exploration , 2012, Inf. Sci..

[37]  Natalio Krasnogor,et al.  Adaptive Cellular Memetic Algorithms , 2009, Evolutionary Computation.

[38]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[39]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[40]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .