Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (Eb,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (Eg), and by reflectance measurements the optical excitonic band gap (Eexc). The difference of these two energies is Eb,exc. The values of Eg and Eb,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au Eb,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant Eb,exc reduction is primarily due to a reduction of Eg resulting from enhanced screening by the metal, while Eexc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

[1]  Meng-qiang Zhao,et al.  Recoil Effect and Photoemission Splitting of Trions in Monolayer MoS2. , 2017, ACS nano.

[2]  Zijing Ding,et al.  Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. , 2017, ACS nano.

[3]  Timothy C. Berkelbach,et al.  Coulomb engineering of the bandgap and excitons in two-dimensional materials , 2017, Nature Communications.

[4]  X. Xiu,et al.  First principles calculations of the interface properties of a-Al2O3/MoS2 and effects of biaxial strain , 2017, 1702.06498.

[5]  Arramel,et al.  Molecular Alignment and Electronic Structure of N,N'-Dibutyl-3,4,9,10-perylene-tetracarboxylic-diimide Molecules on MoS2 Surfaces. , 2017, ACS applied materials & interfaces.

[6]  G. Lanzani,et al.  Unconventional electroabsorption in monolayer MoS2 , 2017 .

[7]  G. Flynn,et al.  Electronic band gaps and exciton binding energies in monolayer M o x W 1 − x S 2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy , 2016 .

[8]  Jonghwan Kim,et al.  Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. , 2016, Nano letters.

[9]  J. Wierzbowski,et al.  Stark Effect Spectroscopy of Mono- and Few-Layer MoS2. , 2016, Nano letters.

[10]  Signe S. Grønborg,et al.  Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction , 2016, 1601.00095.

[11]  M. Batzill,et al.  Band renormalization and spin polarization of MoS2 in graphene/MoS2 heterostructures , 2015 .

[12]  K. Thygesen,et al.  Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. , 2015, Physical review letters.

[13]  David E. Aspnes,et al.  Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films , 2015, Scientific Reports.

[14]  Alexey Chernikov,et al.  Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. , 2015, Physical review letters.

[15]  H. Komsa,et al.  Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment , 2015, 1508.06737.

[16]  R. Hennig,et al.  Al2O3 as a suitable substrate and a dielectric layer for n-layer MoS2 , 2015 .

[17]  G. Montavon,et al.  Sliding Wear Behavior of Al2O3–TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique , 2015, Tribology Letters.

[18]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[19]  Timothy C. Berkelbach,et al.  Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.

[20]  J. Grossman,et al.  Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. , 2015, Nano letters.

[21]  J. Dadap,et al.  Substrate interactions with suspended and supported monolayer Mo S 2 : Angle-resolved photoemission spectroscopy , 2015 .

[22]  Chendong Zhang,et al.  Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. , 2014, Nano letters.

[23]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[24]  Lain‐Jong Li,et al.  Hole mobility enhancement and p -doping in monolayer WSe2 by gold decoration , 2014 .

[25]  Jing Kong,et al.  Dielectric screening of excitons and trions in single-layer MoS2. , 2014, Nano letters.

[26]  X. Qiao,et al.  Photoluminescence properties and exciton dynamics in monolayer WSe2 , 2014 .

[27]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[28]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[29]  Z. Zhang,et al.  The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces , 2014 .

[30]  J. Baumberg,et al.  Excitons in a mirror: Formation of “optical bilayers” using MoS2 monolayers on gold substrates , 2014 .

[31]  S. Khondaker,et al.  Photoluminescence quenching in gold - MoS2 hybrid nanoflakes , 2014, Scientific Reports.

[32]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[33]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[34]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[35]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[36]  H. Takagi,et al.  Electronic structure of a quasi-freestanding MoS₂ monolayer. , 2014, Nano letters.

[37]  Farhan Rana,et al.  Absorption of light by excitons and trions in monolayers of metal dichalcogenide Mo S 2 : Experiments and theory , 2014, 1402.0263.

[38]  Chendong Zhang,et al.  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[39]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[40]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[41]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[42]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[43]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[44]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[45]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[46]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[47]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[48]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[49]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[50]  M. Dvorak,et al.  Origin of the variation of exciton binding energy in semiconductors. , 2013, Physical review letters.

[51]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[52]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[53]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[54]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[55]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[56]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[57]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[58]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[59]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[60]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[61]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[62]  S. Louie,et al.  Coexistence of sharp quasiparticle dispersions and disorder features in graphite , 2005, cond-mat/0506238.

[63]  J. Tersoff,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[64]  Song,et al.  Binding energy for the intrinsic excitons in wurtzite GaN. , 1996, Physical review. B, Condensed matter.

[65]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[66]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[67]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[68]  B. L. Evans,et al.  Optical absorption and dispersion in molybdenum disulphide , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.