Coevolution of network structure and content

As individuals communicate, their exchanges form a dynamic network. We demonstrate, using time series analysis of communication in three online settings, that network structure alone can be highly revealing of the diversity and novelty of the information being communicated. Our approach uses both standard and novel network metrics to characterize how unexpected a network configuration is, and to capture a network's ability to conduct information. We find that networks with a higher conductance in link structure exhibit higher information entropy, while unexpected network configurations can be tied to information novelty. We use a simulation model to explain the observed correspondence between the evolution of a network's structure and the information it carries.

[1]  Yehuda Koren,et al.  Measuring and extracting proximity in networks , 2006, KDD '06.

[2]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[3]  Yiming Yang,et al.  The Enron Corpus: A New Dataset for Email Classi(cid:12)cation Research , 2004 .

[4]  Lada A. Adamic,et al.  Social influence and the diffusion of user-created content , 2009, EC '09.

[5]  Christopher Olston,et al.  What's new on the web?: the evolution of the web from a search engine perspective , 2004, WWW '04.

[6]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[7]  Cong Yu,et al.  Dynamic relationship and event discovery , 2011, WSDM '11.

[8]  E. A. Leicht,et al.  Large-scale structure of time evolving citation networks , 2007, 0706.0015.

[9]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[10]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[11]  Jon M. Kleinberg,et al.  The structure of information pathways in a social communication network , 2008, KDD.

[12]  Dylan Walker,et al.  Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks , 2010, ICIS.

[13]  Susan T. Dumais,et al.  The web changes everything: understanding the dynamics of web content , 2009, WSDM '09.

[14]  David Konopnicki,et al.  Extracting user profiles from large scale data , 2010, MDAC '10.

[15]  Jon M. Kleinberg,et al.  How Bad is Forming Your Own Opinion? , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  E. Nadaraya On Estimating Regression , 1964 .

[18]  Nick Koudas,et al.  Early online identification of attention gathering items in social media , 2010, WSDM '10.

[19]  N. Christakis,et al.  The Spread of Obesity in a Large Social Network Over 32 Years , 2007, The New England journal of medicine.

[20]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[21]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[22]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[23]  Leeat Yariv,et al.  Diffusion, Strategic Interaction, and Social Structure , 2011, Handbook of Social Economics.

[24]  Brian Uzzi,et al.  Synchronicity, instant messaging, and performance among financial traders , 2011, Proceedings of the National Academy of Sciences.

[25]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[26]  Matthew O. Jackson,et al.  Naïve Learning in Social Networks and the Wisdom of Crowds , 2010 .

[27]  Bo Zhao,et al.  PET: a statistical model for popular events tracking in social communities , 2010, KDD.

[28]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Nathan Eagle,et al.  Persistence and periodicity in a dynamic proximity network , 2012, ArXiv.

[30]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[31]  David Lazer,et al.  The Network Structure of Exploration and Exploitation , 2007 .

[32]  Lada A. Adamic,et al.  On the Informational Properties of Trading Networks , 2009 .