Incorporating structural analysis in a quantum dot Monte-Carlo model
暂无分享,去创建一个
Wei Li | N. Babazadeh | R. A. Hogg | D. T. D. Childs | I. M. E. Butler | S. A. Sobhani | I. M. Ross | K. Nishi | K. Takemasa | M. Sugawara | Negin Peyvast | K. Nishi | Wei Li | I. Ross | M. Sugawara | R. Hogg | K. Takemasa | D. Childs | N. Babazadeh | I. Butler | N. Peyvast
[1] John E. Bowers,et al. 1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .
[2] M. Lorke,et al. Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems , 2005, cond-mat/0509543.
[3] Takeo Kageyama,et al. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission , 2013 .
[4] M. S. Skolnick,et al. Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .
[5] A. Schramm,et al. The effect of InGaAs strain-reducing layer on the optical properties of InAs quantum dot chains grown on patterned GaAs(100) , 2012 .
[6] A. R. Kovsh,et al. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .
[7] B. Hakki,et al. Gain spectra in GaAs double−heterostructure injection lasers , 1975 .
[8] Mitsuru Sugawara,et al. Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.
[9] Axel Lorke,et al. Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .
[10] D. Bimberg,et al. Theory of random population for quantum dots , 1997 .
[11] Hiroshi Ishikawa,et al. Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1-x As/GaAs quantum dot lasers , 2000 .
[12] K. Nishi,et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .
[13] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[14] K. Nishi,et al. Carrier–carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope , 2003 .
[15] R. Hogg,et al. Monte Carlo model incorporating many-body effects for determining the gain spectra of quantum dot lasers , 2015 .
[16] Y. Arakawa,et al. Narrow photoluminescence linewidth (<17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition , 2004 .
[17] M. Hopkinson,et al. Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.
[18] N. Babazadeh,et al. Development of broad spectral bandwidth hybrid QW/QD structures from 1000-1400 nm , 2014, Photonics West - Optoelectronic Materials and Devices.
[19] D. Bimberg,et al. Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.
[20] David T. D. Childs,et al. Study of electro-absorption effects in 1300nm In(Ga)As/GaAs quantum dot materials , 2016, SPIE OPTO.
[21] T. Jones,et al. Strain-engineered InAs'GaAs quantum dots for long-wavelength emission , 2003 .
[22] T. Kaizu,et al. Stranski-Krastanov Growth of InAs Quantum Dots with Narrow Size Distribution , 2000 .
[23] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .
[24] Z. G. Wang,et al. Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process. , 2008, Optics letters.
[25] Alfred Forchel,et al. Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .
[26] Yasuhiko Arakawa,et al. Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .