Incorporating structural analysis in a quantum dot Monte-Carlo model

We simulate the shape of the density of states (DoS) of the quantum dot (QD) ensemble based upon size information provided by high angle annular dark field scanning transmission electron microscopy (HAADF STEM). We discuss how the capability to determined the QD DoS from micro-structural data allows a MonteCarlo model to be developed to accurately describe the QD gain and spontaneous emission spectra. The QD DoS shape is then studied, with recommendations made via the effect of removing, and enhancing this size inhomogeneity on various QD based devices is explored.

[1]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[2]  M. Lorke,et al.  Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems , 2005, cond-mat/0509543.

[3]  Takeo Kageyama,et al.  Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission , 2013 .

[4]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[5]  A. Schramm,et al.  The effect of InGaAs strain-reducing layer on the optical properties of InAs quantum dot chains grown on patterned GaAs(100) , 2012 .

[6]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[7]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[8]  Mitsuru Sugawara,et al.  Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.

[9]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[10]  D. Bimberg,et al.  Theory of random population for quantum dots , 1997 .

[11]  Hiroshi Ishikawa,et al.  Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1-x As/GaAs quantum dot lasers , 2000 .

[12]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[13]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[14]  K. Nishi,et al.  Carrier–carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope , 2003 .

[15]  R. Hogg,et al.  Monte Carlo model incorporating many-body effects for determining the gain spectra of quantum dot lasers , 2015 .

[16]  Y. Arakawa,et al.  Narrow photoluminescence linewidth (<17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition , 2004 .

[17]  M. Hopkinson,et al.  Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.

[18]  N. Babazadeh,et al.  Development of broad spectral bandwidth hybrid QW/QD structures from 1000-1400 nm , 2014, Photonics West - Optoelectronic Materials and Devices.

[19]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[20]  David T. D. Childs,et al.  Study of electro-absorption effects in 1300nm In(Ga)As/GaAs quantum dot materials , 2016, SPIE OPTO.

[21]  T. Jones,et al.  Strain-engineered InAs'GaAs quantum dots for long-wavelength emission , 2003 .

[22]  T. Kaizu,et al.  Stranski-Krastanov Growth of InAs Quantum Dots with Narrow Size Distribution , 2000 .

[23]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[24]  Z. G. Wang,et al.  Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process. , 2008, Optics letters.

[25]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[26]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .