K-Adaptability in Two-Stage Robust Binary Programming

Over the last two decades, robust optimization has emerged as a computationally attractive approach to formulate and solve single-stage decision problems affected by uncertainty. More recently, robust optimization has been successfully applied to multistage problems with continuous recourse. This paper takes a step toward extending the robust optimization methodology to problems with integer recourse, which have largely resisted solution so far. To this end, we approximate two-stage robust binary programs by their corresponding K -adaptability problems, in which the decision maker precommits to K second-stage policies, here -and-now, and implements the best of these policies once the uncertain parameters are observed. We study the approximation quality and the computational complexity of the K -adaptability problem, and we propose two mixed-integer linear programming reformulations that can be solved with off-the-shelf software. We demonstrate the effectiveness of our reformulations for stylized instances of supply chain design, route planning, and capital budgeting problems.

[1]  Maarten H. van der Vlerk,et al.  Stochastic Integer Programming Bibliography , 2007 .

[2]  Leen Stougie,et al.  An algorithm for the construction of convex hulls in simple integer recourse programming , 1996, Ann. Oper. Res..

[3]  Constantine Caramanis,et al.  Adaptability via sampling , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[5]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[6]  Dimitris Bertsimas,et al.  Tractable stochastic analysis in high dimensions via robust optimization , 2012, Mathematical Programming.

[7]  Nicole Immorlica,et al.  On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems , 2004, SODA '04.

[8]  Daniel Kuhn,et al.  A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[9]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[10]  Constantine Caramanis,et al.  Finite Adaptability in Multistage Linear Optimization , 2010, IEEE Transactions on Automatic Control.

[11]  Chaitanya Swamy,et al.  Risk-averse stochastic optimization: probabilistically-constrained models and algorithms for black-box distributions , 2011, SODA '11.

[12]  Frederick S Hillier,et al.  Introduction to operations research -8/E , 2002 .

[13]  Jørgen Tind,et al.  L-shaped decomposition of two-stage stochastic programs with integer recourse , 1998, Math. Program..

[14]  R. W. Revans,et al.  Decision and Control , 1968 .

[15]  Vijay V. Vazirani,et al.  Thrifty Algorithms for Multistage Robust Optimization , 2013, IPCO.

[16]  Chaitanya Swamy,et al.  Sampling-Based Approximation Algorithms for Multistage Stochastic Optimization , 2012, SIAM J. Comput..

[17]  Kees Praagman,et al.  Proceedings of the 50th IEEE conference on decision and control and European control conference , 2011 .

[18]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[19]  Daniel Kuhn,et al.  Decision rules for information discovery in multi-stage stochastic programming , 2011, IEEE Conference on Decision and Control and European Control Conference.

[20]  R. Schultz,et al.  Two-stage stochastic integer programming : a survey , 1996 .

[21]  Hanif D. Sherali,et al.  A modification of Benders' decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse , 2002, J. Glob. Optim..

[22]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[23]  Leen Stougie,et al.  Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis , 1995, Math. Program..

[24]  Leen Stougie,et al.  On the convex hull of the simple integer recourse objective function , 1995, Ann. Oper. Res..

[25]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[26]  R. Ravi,et al.  Thresholded covering algorithms for robust and max–min optimization , 2009, Mathematical Programming.

[27]  Xiaobo Li,et al.  Distributionally Robust Mixed Integer Linear Programs: Persistency Models with Applications , 2013, Eur. J. Oper. Res..

[28]  Mayank Sharma,et al.  Supermodularity and Affine Policies in Dynamic Robust Optimization , 2013, Oper. Res..

[29]  Aravind Srinivasan,et al.  Approximation algorithms for stochastic and risk-averse optimization , 2007, SODA '07.

[30]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[31]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[32]  Yanchun Zhang,et al.  Algorithms and Techniques , 2011 .

[33]  Dick den Hertog,et al.  Hints for Practical Robust Optimization , 2013 .

[34]  Dimitris Bertsimas,et al.  Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization , 2015, Oper. Res..

[35]  K. Taira Proof of Theorem 1.3 , 2004 .

[36]  Hans-Jürgen Zimmermann,et al.  On stochastic integer programming , 1975, Z. Oper. Research.

[37]  Ming-Deh A. Huang,et al.  Proof of proposition 2 , 1992 .

[38]  R. Schultz,et al.  Solving stochastic programs with integer recourse by enumeration: a framework using Gro¨bner basis reductions , 1998 .

[39]  R. Faure,et al.  Introduction to operations research , 1968 .

[40]  Laureano F. Escudero,et al.  BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs , 2003, Eur. J. Oper. Res..

[41]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[42]  Daniel Kuhn,et al.  Robust Software Partitioning with Multiple Instantiation , 2012, INFORMS J. Comput..

[43]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[44]  R. Ravi,et al.  Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems , 2004, Math. Program..

[45]  Dimitris Bertsimas,et al.  On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems , 2010, Math. Oper. Res..

[46]  Shabbir Ahmed,et al.  A scenario decomposition algorithm for 0-1 stochastic programs , 2013, Oper. Res. Lett..

[47]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[48]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[49]  Christodoulos A. Floudas,et al.  The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty , 2013, Oper. Res..

[50]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[51]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[52]  Chaitanya Swamy,et al.  An approximation scheme for stochastic linear programming and its application to stochastic integer programs , 2006, JACM.

[53]  Xin Chen,et al.  Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts , 2009, Oper. Res..

[54]  Vahab S. Mirrokni,et al.  Two-stage Robust Network Design with Exponential Scenarios , 2011, Algorithmica.

[55]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[56]  Vahab S. Mirrokni,et al.  Robust Combinatorial Optimization with Exponential Scenarios , 2007, IPCO.

[57]  Michael A. Demetriou,et al.  Proceedings of the 46th IEEE Conference on Decision and Control , 2007, IEEE Conference on Decision and Control.

[58]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[59]  Mohit Singh,et al.  How to pay, come what may: approximation algorithms for demand-robust covering problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[60]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[61]  Ming-Deh A. Huang,et al.  Proof of proposition 1 , 1992 .

[62]  Takayuki Shiina,et al.  Stochastic Programming with Integer Variables , 2007, CSC.

[63]  R. Ravi,et al.  What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization , 2005, APPROX-RANDOM.

[64]  R. Ravi,et al.  Improved approximations for two-stage min-cut and shortest path problems under uncertainty , 2015, Math. Program..

[65]  Dimitris Bertsimas,et al.  A Geometric Characterization of the Power of Finite Adaptability in Multistage Stochastic and Adaptive Optimization , 2011, Math. Oper. Res..

[66]  Leen Stougie,et al.  The stochastic single resource service‐provision problem , 2003 .

[67]  Jochen Trumpf,et al.  Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA, December 12-15, 2011 , 2011, CDC-ECE.

[68]  Leen Stougie,et al.  Approximation in two-stage stochastic integer programming , 2014 .

[69]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[70]  Hanif D. Sherali,et al.  Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming , 2006, Math. Program..

[71]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[72]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[73]  S. Thomas McCormick,et al.  Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.

[74]  Daniel Kuhn,et al.  Generalized decision rule approximations for stochastic programming via liftings , 2014, Mathematical Programming.