Pd(II)-catalyzed addition polymerization and ring opening metathesis polymerization of alicyclic monomers : routes to new matrix resins for 193 nm photolithography

A series of alicyclic polymers designed for 193 nm photoresist applications have been synthesized and characterized. These polymers were synthesized by Pd(II)-catalyzed addition and ring opening metathesis polymerization techniques. Methods for removing residual metal complexes of Pd(II) and Ir(IV) from alicyclic polymers were developed. The low absorbance of these polymers at 193 nm and their high dry etch resistance make them attractive candidates for 193 nm lithography. When formulated with onium-type photoacid generators and plasticizers in propylene glycol monomethyl ether acetate, these photoresists have demonstrated high resolution and high sensitivity.

[1]  B. Novak,et al.  Living 1,2-Olefin-Insertion Polymerizations Initiated by Palladium(II) Alkyl Complexes: Block Copolymers and a Route to Polyacetylene-Hydrocarbon Diblocks , 1995 .

[2]  Gregory Breyta,et al.  Protecting groups for 193-nm photoresists , 1996, Advanced Lithography.

[3]  W. Risse,et al.  Addition polymerization of norbornene catalyzed by palladium(2+) compounds. A polymerization reaction with rare chain transfer and chain termination , 1992 .

[4]  Donald C. Hofer,et al.  Photoresists for 193-nm lithography , 1997, IBM J. Res. Dev..

[5]  William G. Oldham,et al.  Material limitations to 193-nm lithographic system lifetimes , 1996, Advanced Lithography.

[6]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[7]  I. Robinson,et al.  Polynorbornene by Coördination Polymerization1 , 1960 .

[8]  B. Novak,et al.  Air- and water-stable 1,2-vinyl-insertion polymerizations of bicyclic olefins: a simple precursor route to polyacetylene , 1993 .

[9]  B. Goodall,et al.  New catalysts for the polymerization of cyclic olefins , 1995 .

[10]  Hiroshi Gokan,et al.  Dry Etch Resistance of Organic Materials , 1983 .

[11]  J. Collman,et al.  Principles and applications of organotransition metal chemistry , 1980 .

[12]  W. Risse,et al.  THE PD2+-CATALYZED POLYMERIZATION OF NORBORNENE , 1991 .

[13]  R. Rinehart,et al.  The emulsion polymerization of the norbornene ring system catalyzed by noble metal compounds , 1965 .

[14]  C. Willson,et al.  Synthesis of poly(p-hydroxy-α-methylstyrene) by cationic polymerization and chemical modification , 1983 .

[15]  G. Bazan,et al.  Polymerization of functionalized norbornenes employing Mo(CH-t-Bu)(NAr)(O-t-Bu)2 as the initiator , 1990 .

[16]  K. J. Ivin,et al.  Olefin metathesis and metathesis polymerization , 1997 .

[17]  R. D. Allen,et al.  PROGRESS IN 193nm POSITIVE RESISTS , 1996 .

[18]  S. Hahn An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers , 1992 .

[19]  Hiroshi Ito,et al.  Chemical amplification resists: History and development within IBM , 1997, IBM J. Res. Dev..

[20]  Ayusman Sen,et al.  Reactions of electrophilic transition metal cations with olefins and small ring compounds. Rearrangements and polymerizations , 1988 .

[21]  Joice P. Mathew,et al.  (η3-Allyl)palladium(II) and Palladium(II) Nitrile Catalysts for the Addition Polymerization of Norbornene Derivatives with Functional Groups , 1996 .

[22]  A. R. Shultz,et al.  Thermo-Optical, Differential Calorimetric, and Dynamic Viscoelastic Transitions in Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO Resin) Blends with Poly-p-chlorostyrene and with Styrene-p-Chlorostyrene Statistical Copolymers , 1974 .

[23]  Sheila Vaidya,et al.  Degradation of fused silica at 193 nm and 213 nm , 1995, Advanced Lithography.

[24]  Hiroshi Ito,et al.  Poly(p-tert-butoxycarbonyloxystyrene): a convenient precursor to p-hydroxystyrene resins , 1983 .

[25]  B. Mandal,et al.  Poly-2,3- and 2,7-Bicyclo[2.2.1]hept-2-enes: Preparation and Structures of Polynorbornenes , 1977 .

[26]  G. Bazan,et al.  Living ring-opening metathesis polymerization of 2,3-difunctionalized 7-oxanorbornenes and 7-oxanorbornadienes by Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(O-tert-Bu)2 and Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(OCMe2CF3)2 , 1991 .

[27]  Ayusman Sen,et al.  Catalytic polymerization of acetylenes and olefins by tetrakis(acetonitrile)palladium(II) ditetrafluoroborate , 1982 .

[28]  R. G. Schultz The chemistry of palladium complexes. III. The polymerization of norbornene systems catalyzed by palladium chloride (1) , 1966 .

[29]  W. Risse,et al.  Transition‐metal‐catalyzed vinyl addition polymerizations of norbornene derivatives with ester groups , 1992 .

[31]  C. Tanielian,et al.  Influence de différents catalyseurs à base d'éléments de transition du groupe VIII sur la polymérisation du norbornène , 1979 .

[32]  R. Grubbs,et al.  End capping of polynorbornene produced by titanacyclobutanes , 1987 .

[33]  B. Mandal,et al.  Peroxide‐induced polymerization of norbornene , 1976 .

[34]  L. Bencze,et al.  Characteristics of the one-component catalysts M(CO)3X2L2 (M = Mo or W, L = PPh3 or AsPh3, X = Cl OR Br) in the ring-opening polymerization of norbornene , 1985 .

[35]  Joel Fried,et al.  Polymer Science and Technology , 1995 .

[36]  William G. Oldham,et al.  Deep‐ultraviolet damage to fused silica , 1994 .

[37]  E. Perez,et al.  First example of latices synthesis via oligomerization of norbornene in aqueous emulsions, catalyzed by palladium chloride , 1993 .

[38]  James V. Crivello,et al.  A new preparation of triarylsulfonium and -selenonium salts via the copper(II)-catalyzed arylation of sulfides and selenides with diaryliodonium salts , 1978 .

[39]  Richard A. Di Pietro,et al.  Limits to etch resistance for 193-nm single-layer resists , 1996, Advanced Lithography.

[40]  Roderick R. Kunz,et al.  Acid-catalyzed single-layer resists for ArF lithography , 1993, Advanced Lithography.

[41]  Jeff D. Byers,et al.  New single-layer positive photoresists for 193-nm photolithography , 1997, Advanced Lithography.

[42]  Thomas I. Wallow,et al.  Evaluation of cycloolefin-maleic anhydride alternating copolymers as single-layer photoresists for 193-nm photolithography , 1996, Advanced Lithography.

[43]  J. Kennedy,et al.  Carbonium Ion Polymerization of Norbornene and Its Derivatives , 1967 .

[44]  L. Prokai,et al.  Mechanism of initiation of the metathesis of norbornene using W(CO)3Cl2(AsPh3)2 as catalyst , 1985 .

[45]  T. Saegusa,et al.  Polymerization of norbornene by modified Ziegler‐catalysts , 1965 .