Turing oracle machines, online computing, and three displacements in computability theory

We begin with the history of the discovery of computability in the 1930’s, the roles of Godel, Church, and Turing, and the formalisms of recursive functions and Turing automatic machines (a-machines). To whom did Godel credit the definition of a computable function? We present Turing’s notion [1939, §4] of an oracle machine (o-machine) and Post’s development of it in [1944, §11], [1948], and finally Kleene-Post [1954] into its present form. A number of topics arose from Turing functionals including continuous functionals on Cantor space and online computations. Almost all the results in theoretical computability use relative reducibility and o-machines rather than a-machines and most computing processes in the real world are potentially online or interactive. Therefore, we argue that Turing o-machines, relative computability, and online computing are the most important concepts in the subject, more so than Turing a-machines and standard computable functions since they are special cases of the former and are presented first only for pedagogical clarity to beginning students. At the end in §10–§13 we consider three displacements in computability theory, and the historical reasons they occurred. Several brief conclusions are drawn in §14.

[1]  S. Kleene Hierarchies of number-theoretic predicates , 1955 .

[2]  S. Kleene $\lambda$-definability and recursiveness , 1936 .

[3]  H. Rogers,et al.  Reducibility and Completeness for Sets of Integers , 1959 .

[4]  Martin D. Davis The Myth of Hypercomputation , 2004 .

[5]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[6]  R. Peter,et al.  Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion , 1935 .

[7]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[8]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[9]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[10]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .

[11]  Joseph R. Shoenfield,et al.  The Mathematical Work of S.C.Kleene , 1995, Bulletin of Symbolic Logic.

[12]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[13]  L. M.-T. Grundzüge der theoretischen Logik , 1929, Nature.

[14]  Cliff B. Jones,et al.  An Early Program Proof by Alan Turing , 1984, Annals of the History of Computing.

[15]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[16]  George Boolos,et al.  Computability and logic , 1974 .

[17]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[18]  Joseph R. Schoenfield Recursion theory , 1993 .

[19]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[20]  Jan Wolenski,et al.  Church's Thesis After 70 Years , 2007 .

[21]  Sc Kleene,et al.  R. PETER [1934] Uber den Zussammenhang der verschiedenen Begriffe der rekursiven Funktion, Math. Ann , 1999 .

[22]  A. Turing THE WORD PROBLEM IN SEMI-GROUPS WITH CANCELLATION , 1950 .

[23]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[24]  Martin Davis,et al.  The Universal Computer: The Road from Leibniz to Turing , 2002 .

[25]  S. Kleene Recursive predicates and quantifiers , 1943 .

[26]  Robin Gandy,et al.  The confluence of ideas in 1936 , 1988 .

[27]  W. Ackermann,et al.  Grundzuge der Theoretischen Logik , 1928 .

[28]  A. Church The constructive second number class , 1938 .

[29]  G. Sacks Higher recursion theory , 1990 .

[30]  Dc Daan Schram,et al.  Accurate and fast simulation approach of a radiating thermal plasma , 1981 .

[31]  Robert I. Soare,et al.  Computability and Recursion , 1996, Bulletin of Symbolic Logic.

[32]  Andrea Sorbi,et al.  Computation and Logic in the Real World , 2007, Lecture Notes in Computer Science.

[33]  S. C. Kleene,et al.  Turing-Machine Computable Functionals of Finite Types I , 1966 .

[34]  Hao Wang On Physicalism and Algorithmism: Can machines think? , 1993 .

[35]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[36]  Truth and Turing : Systems of Logic based on Ordinals , 2011 .

[37]  George Barmpalias,et al.  The ibT degrees of computably enumerable sets are not dense , 2006, Ann. Pure Appl. Log..

[38]  Wilfrid Hodges,et al.  KURT GÖDEL COLLECTED WORKS, Volume III (Unpublished Essays and Lectures) Edited by Solomon Feferman et al.: 532 pp., £45.00, ISBN 0 19 507255 3 (Oxford University Press, 1995) , 1997 .

[39]  R. Friedberg,et al.  TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Andrew Hodges,et al.  Alan turing: the logical and physical basis of computing , 2004 .

[41]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[42]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[43]  S. C. Kleene Algorithms in various contexts , 1979, Algorithms in Modern Mathematics and Computer Science.

[44]  Stephen C. Kleene,et al.  Turing's analysis of computability, and major applications of it , 1988 .

[45]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[46]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[47]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[48]  Robert I. Soare,et al.  Computability results used in differential geometry , 2006, J. Symb. Log..

[49]  S. Kleene Arithmetical predicates and function quantifiers , 1955 .

[50]  Robert I. Soare,et al.  The History and Concept of Computability , 1999, Handbook of Computability Theory.

[51]  C. Teuscher,et al.  Alan Turing: Life and Legacy of a Great Thinker , 2004, Springer Berlin Heidelberg.

[52]  Hao Wang,et al.  Some facts about Kurt Gödel , 1981, Journal of Symbolic Logic.

[53]  Manuel Lerman,et al.  Degrees of Unsolvability: Local and Global Theory , 1983 .

[54]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[55]  Robert I. Soare,et al.  An Overview of the Computably Enumerable Sets , 1999, Handbook of Computability Theory.

[56]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[57]  Wilfried Sieg,et al.  Mechanical Procedures and Mathematical Experience , 1991 .

[58]  Stephen Read,et al.  FROM MATHEMATICS TO PHILOSOPHY , 1974 .

[59]  Stephen Cole Kleene,et al.  Reflections on Church's thesis , 1987, Notre Dame J. Formal Log..

[60]  N. Cutland Computability: An Introduction to Recursive Function Theory , 1980 .

[61]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[62]  D. Hilbert Über das Unendliche , 1926 .

[63]  C. Bach Logical dilemmas: The life and work of kurt gödel , 1998 .

[64]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[65]  Joseph R. Shoenfield,et al.  Degrees of unsolvability , 1959, North-Holland mathematics studies.

[66]  David Hilbert,et al.  Über die Grundlagen der Logik und der Arithmetik , 1905 .

[67]  M. Davis,et al.  Mathematical logic and the origin of modern computers , 1987 .

[68]  Sebastiano Vigna,et al.  A Note on Recursive Functions , 1996, Math. Struct. Comput. Sci..

[69]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[70]  Richard L. Epstein,et al.  Computability. Computable Functions, Logic, and the Foundations of Mathematics. Second Edition of the Preceding. , 2002 .

[71]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .

[72]  A. M. Turing,et al.  Solvable and Unsolvable Problems , 1954 .

[73]  P. Kidwell,et al.  The universal turing machine: a half-century survey , 1996, IEEE Annals of the History of Computing.

[74]  Andrea Sorbi,et al.  New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .

[75]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals , 1944 .

[76]  Manuel Lerman,et al.  Computability theory and its applications : current trends and open problems : proceedings of a 1999 AMS-IMS-SIAM Joint Summer Research Conference, Computability Theory and Applications, June 13-17, 1999, University of Colorado, Boulder , 2000 .

[77]  S. Kleene General recursive functions of natural numbers , 1936 .

[78]  Emil L. Post Note on a conjecture of Skolem , 1946, Journal of Symbolic Logic (JSL).

[79]  Manuel Lerman,et al.  Degrees of Unsolvability: Local and Global Theory , 1983 .

[80]  R. H. BING,et al.  Mathematical Work , 2007 .

[81]  Scott A. Smolka,et al.  Interactive Computation: The New Paradigm , 2006 .

[82]  Kurt Gödel,et al.  On undecidable propositions of formal mathematical systems , 1934 .

[83]  Stephen Cole Kleene Turing-machine computable func-tionals of nite types II , 1962 .

[84]  Rolf Herken,et al.  Alan Turing and the Turing Machine.Turing's Analysis of Computability, and Major Applications of it.The Confluence of Ideas in 1936.Turing in the Land of O.Mathematical Logic and the Origin of Modern Computers , 1991 .

[85]  P. Odifreddi,et al.  Incomputability in Nature , 2003 .

[86]  Stephen Cole Kleene,et al.  Origins of recursive function theory , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[87]  John W. Dawson,et al.  Collected Works, Volume I, Publications 1929-1936 , 1987 .

[88]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[89]  Helmut Veith John W. Dawson, Jr . Logical Dilemmas. The Life and Work of Kurt Gödel . Wellesley, Mass.: A.K. Peters 1997 , 1998 .

[90]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[91]  Michael O. Rabin,et al.  Lecture to the london mathematical society on 20 february 1947 Universal Turing Machine , 2022 .

[92]  Robert I. Soare,et al.  Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.

[93]  Benedikt Löwe,et al.  New Computational Paradigms , 2005 .

[94]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[95]  Alonzo Church,et al.  Formal definitions in the theory of ordinal numbers , 1937 .

[96]  P. Odifreddi Classical recursion theory , 1989 .

[97]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[98]  Robert I. Soare,et al.  Computability Theory and Differential Geometry , 2004, Bulletin of Symbolic Logic.

[99]  Martin D. Davis,et al.  Why Gödel Didn't Have Church's Thesis , 1982, Inf. Control..

[100]  Kurt Godel Remarks before the Princeton Bicentennial Conference on problems in mathematics , 1990 .

[101]  Hao Wang,et al.  Reflections on Kurt Gödel , 1987 .

[102]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[103]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[104]  Hilary Putnam,et al.  Trial and error predicates and the solution to a problem of Mostowski , 1965, Journal of Symbolic Logic.