Interactions of Magnetic Field and the Magnetic Fluid Surface

This paper is concerned with the interaction between the applied magnetic field and the magnetic fluid surface. Liquid responses of magnetic fluids under the magnetic and vibrating fields were investigated. Experiments were performed on a vibration-testing system which provided lateral and longitudinal excitation. The effect of the magnetic field gradient on liquid surface motion in an open circular cylindrical tank was noted. Details of surface responses of a magnetic fluid in the cylindrical container excited longitudinally under an applied magnetic field were revealed. Some similarities and differences between single magnetic spike oscillation and the symmetric free surface mode (0, 1) of magnetic liquid sloshing in the presence of a magnetic field were investigated. It was found that the elongation of the symmetric free surface mode (0, 1) and single magnetic spike were based on the same mechanism. The formation and the disappearance of magnetic drops formed by surface disintegration in the cylindrical container subject to horizontal vibration were also investigated. It was observed that the number of floating drops induced by vibrating the cylindrical container laterally with the natural frequency of the fluid-container system, decreased greatly with the magnetic field intensity.