Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites

We examined the spectral reflectance properties of 16 CO-type carbonaceous chondrites (CCs) in order to better understand their range of spectral properties, develop spectral–compositional correlations, and provide information that may aid in the search for CO parent bodies. As a group, our CO powder spectra have some similarities and differences. COs have experienced varying degree of thermal metamorphism, with petrologic subgrades ranging from CO3.0 to CO3.8. Their reflectance spectra are characterized by a ubiquitous absorption feature in the 1 lm region, and a nearly ubiquitous feature in the 2 lm region that appears in CO >3.1 spectra. The 1 lm region feature is attributable to abundant Fe-bearing amorphous phases (and Fe-poor olivine) in the lower petrologic subtypes, which gradually transforms to more abundant and Fe-rich olivine with increasing metamorphism. The increase in depth and decrease in wavelength position of this feature are consistent with this transformation. All but the least-altered COs also exhibit an absorption feature in the 2 lm region whose depth also generally increases with increasing metamorphic grade, resulting in increasingly blue-sloped spectra and larger band area ratios. The wavelength position and change in depth of this feature (ranging from 0% to 12.2%) is consistent with increasing Fe 2+ in spinel, which is present in calcium–aluminum and ameboid olivine inclusions. Reflectance of a local reflectance maximum near 0.8 lm increases with increasing thermal metamorphism and this is likely due to the loss and aggregation of carbonaceous phases. The increasing reflectance is negatively correlated with various measures of spectral slope (i.e., brighter = bluer), and while this cannot be uniquely attributed to any one cause, it is consistent with increasing spinel Fe 2+ content and decreasing carbonaceous material abundance or aggregation. With decreasing grain size, CO spectra normally become brighter and more red-sloped. The 0.6/0.5 lm ratios of CO falls are consistently higher than CO finds, suggesting that terrestrial weathering has affected the visible wavelength region spectral properties of finds. Unmetamorphosed CO spectra may be difficult to distinguish from the least altered CM chondrites. However above petrologic grade 3.1, COs can be uniquely discriminated from CI, CM, metamorphosed CI and CM, and CR chondrites, by the presence of both olivine and spinel absorption bands. Some K-class asteroids exhibit olivine and spinel absorption bands, consistent with CO chondrites, although modeled olivine:spinel ratios are generally lower in these asteroids than in CO chondrites.

[1]  David Beeman,et al.  Modeling studies of amorphous carbon , 1984 .

[2]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[3]  A. Davis Meteorites, comets, and planets , 2004 .

[4]  My Ha VuongBernard H. Foing Dehydrogenation of polycyclic aromatic hydrocarbons in the diffuse interstellar medium , 2000, astro-ph/0010385.

[5]  K. Yanai,et al.  Chemical compositions of Antarctic meteorites I , 1983 .

[6]  T. D. WnIrB,et al.  Electronic spectra of Fe3 + oxides and oxide hydroxides in the near IR to near UV , 2022 .

[7]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[8]  A. Kearsley,et al.  Are CK chondrites really a distinct group or just equilibrated CVs , 2003 .

[9]  K. Righter,et al.  Opaque Assemblages in CK and CV Carbonaceous Chondrites , 2006 .

[10]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[11]  国立極地研究所,et al.  Catalog of the antarctic meteorites : collected from December 1969 to Deccember 1994, with special reference to those represented in the collections of the National Institute of Polar Research , 1995 .

[12]  G. Arnold,et al.  Natural Solid Bitumens as Possible Analogs for Cometary and Asteroid Organics:: 1. Reflectance Spectroscopy of Pure Bitumens , 1998 .

[13]  E. Scott,et al.  DISENTANGLING NEBULAR AND ASTEROIDAL FEATURES OF CO3 CARBONACEOUS CHONDRITE METEORITES , 1990 .

[14]  Gautham Narayan,et al.  Physical characteristics of Comet Nucleus C/2001 OG108 (LONEOS) , 2005 .

[15]  J. Bell,et al.  S-asteroids 387 Aquitania and 980 Anacostia - Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities , 1992 .

[16]  M. Gaffey,et al.  Asteroid surface materials - Mineralogical characterizations and cosmological implications , 1977 .

[17]  M. Sephton,et al.  Molecular and isotopic indicators of alteration in CR chondrites , 2006 .

[18]  E. Cloutis,et al.  Spectral reflectance properties of minerals exposed to simulated Mars surface conditions , 2008 .

[19]  N. Vergo,et al.  Optical (diffuse reflectance) and Moessbauer spectroscopic study of nontronite and related Fe-bearing smectites , 1988 .

[20]  M. Keynes Organic compounds in carbonaceous meteorites , 2002 .

[21]  M. Burchell,et al.  Microstructures of a Calcite Vein in LON 94101: Evidence for Asteroidal Fluid Flow? , 2010 .

[22]  L. Moroz,et al.  REFLECTANCE SPECTRA OF CM2 CHONDRITE MIGHEI IRRADIATED WITH PULSED LASER , 2004 .

[23]  J. Hayes,et al.  Chemical and petrographic correlations among carbonaceous chondrites , 1974 .

[24]  A. Zaikowski Infrared spectra of the Orgueil (C-1) chondrite and serpentine minerals , 1979 .

[25]  J. Rapp,et al.  Encyclopedia of Minerals , 1990 .

[26]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[27]  S. Tari,et al.  Thermally Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes of Phyllosilicates , 1997 .

[28]  J. Blum,et al.  Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies , 2009 .

[29]  A. Rubin,et al.  Compositions and taxonomy of 15 unusual carbonaceous chondrites , 2010 .

[30]  B. Hapke,et al.  Scattering properties of planetary regolith analogs , 2002 .

[31]  C. Johnson,et al.  Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites: Implications for thermal histories and group differences , 1991 .

[32]  B. Hapke,et al.  Asteroid Space Weathering and Regolith Evolution , 2002 .

[33]  H. Kuroda,et al.  Photoconduction in Charge‐Transfer Complexes , 1963 .

[34]  T. Kojima,et al.  Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .

[35]  M. Gaffey,et al.  Spectral reflectance properties of carbonaceous chondrites – 5: CO chondrites , 2012 .

[36]  D. Britt,et al.  Black ordinary chondrites - An analysis of abundance and fall frequency , 1991 .

[37]  J. Gooding Clay-mineraloid weathering products in Antarctic meteorites , 1986 .

[38]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[39]  John T. Wasson,et al.  Meteorites: Classification and Properties , 1974 .

[40]  Ian Wright,et al.  Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites , 2003 .

[41]  C. Pieters,et al.  Reflectance spectra of some fractions of Migei and Murchison SM chondrites in the range of 0.3-2.6 microns , 1991 .

[42]  R. Okazaki,et al.  Thermal Metamorphism of CM Carbonaceous Chondrites: Effects on Phyllosilicate Mineralogy and Presolar Grain Abundances , 2006 .

[43]  H. Palme,et al.  Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites , 1993 .

[44]  P. Buseck,et al.  Fine-grained Rim Mineralogy of the Cold Bokkeveld CM Chondrite by Transmission Electron Microscopy , 2001 .

[45]  G. Hodgson,et al.  Evidence for Porphyrins in the Orgueil Meteorite , 1964, Nature.

[46]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[47]  P. Buseck,et al.  Matrix mineralogy of the Lance CO3 carbonaceous chondrite - A transmission electron microscope study , 1990 .

[48]  M. J. Fitzgerald THE CHEMICAL COMPOSITION AND CLASSIFICATION OF THE KAROONDA METEORITE , 1979 .

[49]  Michael J. Gaffey,et al.  Space weathering and the interpretation of asteroid reflectance spectra , 2010 .

[50]  T. Noguchi Petrology and mineralogy of the Coolidge meteorite (CV4) , 1994 .

[51]  J. Mayo Greenberg,et al.  Interstellar Dust - an Overview of Physical and Chemical Evolution , 1989 .

[52]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[53]  K. Keil,et al.  The CR chondrite clan: Implications for early solar system processes , 2002 .

[54]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[55]  D. Mckenzie,et al.  Production of amorphous carbon by plasma immersion ion implantation of polymers , 2005 .

[56]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[57]  H. McSween,et al.  Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .

[58]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[59]  O. Ito Diffuse reflectance spectra of coals in the UV-visible and near-IR regions , 1992 .

[60]  B. Schmitt,et al.  Fe-XANES Study of CI and CM Chondrites Matrix Mineralogy , 2010 .

[61]  D. J. Barber Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites , 1981 .

[62]  J. Grossman The Meteoritical Bulletin, No. 84, 2000 August , 2000 .

[63]  N. Nakamura,et al.  Rare earth element abundances in the CK chondrites including the Kobe meteorite , 2002 .

[64]  C. R. Howarth,et al.  Optical constants of carbons and coals in the infrared , 1968 .

[65]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[66]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[67]  G. Arnold,et al.  Influence of neutral components on relative band contrasts in reflectance spectra of intimate mixtures: Implications for remote sensing: 1. Nonlinear mixing modeling , 1999 .

[68]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[69]  J. Wood Chondrites - Their metallic minerals, thermal histories, and parent planets. , 1967 .

[70]  R. Clarke,et al.  Corrosion of Fe-Ni alloys by Cl-containing akaganeite (beta -FeOOH); the Antarctic meteorite case , 1989 .

[71]  A. Rubin,et al.  Chondrules and matrix in the Ornans CO3 meteorite: Possible precursor components , 1988 .

[72]  G. Cody,et al.  Compositional Trends in Chondritic Organic Solids Within and Between Meteoritic Groups , 2003 .

[73]  I. Ohnishi,et al.  A hydrated clast in the Mokoia CV3 carbonaceous chondrite: Evidence for intensive aqueous alteration in the CV parent body , 2011 .

[74]  P. Buseck,et al.  Serpentine nanotubes in the Mighei CM chondrite , 2004 .

[75]  C. Floss,et al.  HIGH ABUNDANCES OF CIRCUMSTELLAR AND INTERSTELLAR C-ANOMALOUS PHASES IN THE PRIMITIVE CR3 CHONDRITES QUE 99177 AND MET 00426 , 2009 .

[76]  J. Nelen,et al.  The Renazzo chondrite - a reevaluation , 1975 .

[77]  Elisabetta Dotto,et al.  Optical alteration of complex organics induced by ion-irradiation: 1. Laboratory experiments suggest unusual space weathering trend. , 2004 .

[78]  H. P. Rickman,et al.  Asteroids comets meteors , 1984 .

[79]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[80]  A. Bischoff,et al.  Mineralogy, Degree of Brecciation, and Aqueous Alteration of CI Chondrites Orgueil, Ivuna, and Alais , 1993 .

[81]  A. Muxworthy,et al.  Magnetic characteristics of CV chondrules with paleointensity implications , 2011 .

[82]  U. Buchenau,et al.  Measurement of the magneto-optical properties of magnetite in the near infrared , 1975 .

[83]  C. Floss,et al.  Auger Nanoprobe analysis of presolar ferromagnesian silicate grains from primitive CR chondrites QUE 99177 and MET 00426 , 2009 .

[84]  D. Mckay,et al.  Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite , 1993 .

[85]  B. Clark,et al.  K asteroids and CO3/CV3 chondrites , 2001 .

[86]  J. Salisbury,et al.  Meteorite spectra and weathering , 1974 .

[87]  H. Palme,et al.  Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints of their formation , 1988 .

[88]  A. Brearley Matrix Olivines in the Metamorphosed CK Chondrite NWA 1628: Possible Affinities to Olivines in the Matrices of Oxidized CV3 Chondrites and Dark Inclusions , 2009 .

[89]  E. Olsen,et al.  Origin of the high-temperature fraction of C2 chondrites , 1974 .

[90]  Sherwood Chang,et al.  Carbonaceous chondrites—I. Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite , 1979 .

[91]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[92]  A. Schmitt,et al.  Mn-Cr Systematics for the CM2.1 Chondrites QUE 93005 and ALH 83100: Implications for the Timing of Aqueous Alteration , 2009 .

[93]  D. Lauretta,et al.  Opaque phases in type-II chondrules from CR2 chondrites: Implications for CR parent body formation , 2008 .

[94]  P. Bland,et al.  Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD) , 2010 .

[95]  Hideo Ohashi,et al.  Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples , 1999 .

[96]  J. Trigo‐Rodríguez,et al.  Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .

[97]  Larry R. Nittler,et al.  Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy , 2007 .

[98]  Michael E. Zolensky,et al.  Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent‐body temperature history , 2010 .

[99]  M. Kimura,et al.  Ca, Al-rich inclusions in Yamato 791717 (CO3) carbonaceous chondrite: Formation and alteration , 1998 .

[100]  W. Calvin,et al.  Spectral characteristics of iron‐bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2) , 1997 .

[101]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[102]  A. Kearsley,et al.  THE RELATIONSHIP BETWEEN CK AND CV CHONDRITES: A SINGLE PARENT BODY SOURCE? , 2004 .

[103]  G. Cody,et al.  Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy , 2011 .

[104]  M. Zolensky Mineralogy and matrix composition of CR chondrites Renazzo and EET 87770, and ungrouped chondrites Essebi and MAC 87300 , 1991 .

[105]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites—VIII: Thermoluminescence and metamorphism in the CO chondrites , 1987 .

[106]  P. Buseck,et al.  FAYALITE IN THE KABA AND MOKOIA CARBONACEOUS CHONDRITES , 1995 .

[107]  Brian Mason,et al.  The carbonaceous chondrites , 1963 .

[108]  U. Buchenau,et al.  Optical properties of magnetite , 1972 .

[109]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[110]  D. Lauretta,et al.  ON THE NEBULAR AND AQUEOUS SIGNATURES IN THE CR CHONDRITES , 2009 .

[111]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[112]  M. Gounelle,et al.  Magnetite Content and Carbonate Mineralogy as Constraints for Parent Body Hydrothermal Alteration , 2010 .

[113]  C. Pillinger,et al.  Carbon and Nitrogen Isotopes in CR Chondrites; Evidence for a Single Parent Body? , 1992 .

[114]  P. Buseck,et al.  Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites , 2007 .

[115]  M. Prinz,et al.  The Bencubbin chondrite breccia and its relationship to CR chondrites and the ALH85085 chondrite , 1990 .

[116]  R. Jones Effect of metamorphism on isolated olivine grains in CO3 chondrites , 1993 .

[117]  M. Zolensky,et al.  Yamato 86029: Aqueously altered and thermally metamorphosed CI‐like chondrite with unusual textures , 2003 .

[118]  M. Zolensky,et al.  Workshop on Parent-Body and Nebular Modification of Chondritic Materials , 1997 .

[119]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[120]  Julie Ziffer,et al.  Spectroscopy of B-type Asteroids: Subgroups and meteorite analogs , 2010 .

[121]  W. Herr,et al.  Mössbauer Spectroscopy Applied to the Classification of Stone Meteorites , 1969 .

[122]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[123]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[124]  D. J. Barber,et al.  Yamato-82042: an unusual carbonaceous chondrite with CM affinities , 1987 .

[125]  T. Gehrels,et al.  Physical studies of minor planets , 1971 .

[126]  J. Grossman The Meteoritical Bulletin, No. 81, 1997 Jul , 1997 .

[127]  C. Barbieri,et al.  Visible Spectroscopy of Dark, Primitive Asteroids , 1994 .

[128]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[129]  J. Kerridge Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite , 1976 .

[130]  T. Wdowiak,et al.  Insoluble organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. , 1988, The Astrophysical journal.

[131]  M. Prinz,et al.  CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites , 1992 .

[132]  A. Bischoff,et al.  Formation of opaque minerals in CK chondrites , 1995 .

[133]  D. Sears,et al.  CLASSIFICATION OF THE ALLAN HILLS A77307 METEORITE , 1983 .

[134]  N. Takaaki Texture and chemical composition of pyroxenes in chondrules in carbonaceous and unequilibrated ordinary chondrites , 1989 .

[135]  L. Taylor,et al.  Origin of a metamorphosed lithic clast in CM chondrite Grove Mountains 021536 , 2010 .

[136]  J. Grossman The Meteoritical Bulletin, No. 76, 1994 January: The U.S. Antarctic Meteorite Collection* , 1994 .

[137]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[138]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[139]  Okada Akihiko Petrological Studies of the Yamato Meteorites Part1. Mineralogy of the Yamato Meteorites , 1975 .

[140]  K. Righter,et al.  Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system , 2007 .

[141]  W. S. Boyle,et al.  BAND STRUCTURE AND INFRARED ABSORPTION OF GRAPHITE , 1958 .

[142]  M. Gaffey,et al.  Reflectance spectroscopy of diogenite meteorite types from Antarctica and their relationship to asteroids , 1982 .

[143]  E. A. King Refractory residues, condensates and chondrules from solar furnace experiments , 1982 .

[144]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[145]  J. Wood Olivine and pyroxene compositions in type II carbonaceous chondrites , 1967 .

[146]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[147]  D. Britt,et al.  Reflection spectra of shocked ordinary chondrites and their relationship to asteroids , 1992 .

[148]  Kushiro,et al.  Petrology of chondrules, inclusions and isolated olivine grains in ALH-77307 (CO3) chondrite , 1982 .

[149]  Bonnie J. Buratti,et al.  The effects of scattering geometry on the spectrophotometric properties of powdered material , 1980 .

[150]  G. Kurat,et al.  Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite , 1979 .

[151]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[152]  J. Kerridge Some observations on the nature of magnetite in the Orgueil meteorite , 1970 .

[153]  A. Provost,et al.  Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites , 2012 .

[154]  A. Davis,et al.  Refractory inclusions from the ungrouped carbonaceous chondrites MacAlpine Hills 87300 and 88107 , 2000 .

[155]  Akai Junji Void structures in olivine grains in thermally metamorphosed Antarctic carbonaceous chondrite B-7904 , 1994 .

[156]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[157]  A. Dollfus,et al.  6. The Nature of Asteroid Surfaces, from Optical Polarimetry , 1977 .

[158]  M. Gaffey A systematic study of the spectral reflectivity characteristics of the meteorite classes with applications to the interpretation of asteroid spectra for mineralogical and petrological information , 1974 .

[159]  M. Zolensky,et al.  Weathering of Chondritic Meteorites , 2006 .

[160]  R. Wäsch,et al.  Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces , 2004 .

[161]  S. Sandford Infrared transmission spectra from 2.5 to 25 μm of various meteorite classes , 1984 .

[162]  G. Wasserburg,et al.  The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates , 1981 .

[163]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[164]  T. Hiroi,et al.  Characterization of unusual CI/CM/CR meteorites from reflectance spectroscopy , 1997 .

[165]  R. Brunetto,et al.  Elastic collisions in ion irradiation experiments: A mechanism for space weathering of silicates , 2005 .

[166]  A. Brearley In Situ Location and Characterization of Carbon-bearing Phases in Carbonaceous Chondrites: Insights from Yamato 791198, a Weakly-altered CM2 Chondrite , 2004 .

[167]  M. Zolensky,et al.  Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.

[168]  I. Franchi,et al.  Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes , 2004 .

[169]  L. Grossman Refractory Inclusions in the Allende Meteorite , 1980 .

[170]  Roger N. Clark,et al.  Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy , 1989 .

[171]  Roger G. Burns,et al.  Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .

[172]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[173]  W. R. Schmus Mineralogy, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites , 1969 .

[174]  D. Wark,et al.  Marker Events in the Early Evolution of the Solar System: Evidence from Rims on Calcium-Aluminium-Rich Inclusions in Carbonaceous Chondrites , 1977 .

[175]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[176]  A. Brearley Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .

[177]  D. Lauretta,et al.  The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition , 2011 .

[178]  Ikeda Yukio Petrology of the ALH-77003 chondrite (C3) , 1982 .

[179]  P. Buseck,et al.  Mineralogy of fine-grained rims in the alh 81002 cm chondrite , 2000 .

[180]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[181]  A. Kearsley,et al.  Clay mineral‐organic matter relationships in the early solar system , 2002 .

[182]  P. Buseck,et al.  Unusual forms of magnetite in the Orgueil carbonaceous chondrite , 1998 .

[183]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[184]  P. Wachter,et al.  Optical properties of magnetite (Fe3O4) , 1979 .

[185]  R. Clayton,et al.  Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara , 1993 .

[186]  P. Jenniskens Optical constants of organic refractory residue , 1993 .

[187]  I. Mackinnon,et al.  The clay-size fraction of CI chondrites Alais and Orgueil : an AEM study , 1988 .

[188]  A. Rubin,et al.  The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .

[189]  I. Franchi,et al.  Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and Cos , 2010 .

[190]  A. Rubin Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite‐free spinel inclusions in CM chondrites , 2007 .

[191]  J. Veverka,et al.  Limb darkening of meteorites and asteroids , 1983 .

[192]  A. Rubin,et al.  Siderophile-element Anomalies in CK Carbonaceous Chondrites: Implications for Parent-body Aqueous Alteration and Terrestrial Weathering of Sulfides , 2006 .

[193]  Optical spectra of amorophous carbon grains , 1985 .

[194]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[195]  P. Bland,et al.  Modal mineralogy of carbonaceous chondrites by X‐ray diffraction and Mössbauer spectroscopy , 2004 .

[196]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components , 1995 .

[197]  J. M. Knudsen,et al.  Meteorites and the Origin of Water and Reduced Carbon on the Earth , 1981 .

[198]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[199]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[200]  C. Floss,et al.  Brecciation and chemical heterogeneities of CI chondrites , 2006 .

[201]  D. Sherman The electronic structures of Fe3+ coordination sites in iron oxides: Applications to spectra, bonding, and magnetism , 1985 .

[202]  B. Mason,et al.  Descriptions of two meteorites : Karoonda and Erakot. American Museum novitates ; no. 2115 , 1962 .

[203]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[204]  C. Pieters,et al.  The Continuum Slope of Mars: Bidirectional Reflectance Investigations and Applications to Olympus Mons , 1993 .

[205]  M. Hyman,et al.  Magnetite in CI chondrites , 1983 .

[206]  K. Keil,et al.  Unusual weathering products of oldhamite parentage in the Norton County enstatite achondrite , 1981 .

[207]  Marcello Fulchignoni,et al.  SEARCH FOR AQUEOUSLY ALTERED MATERIALS ON ASTEROIDS , 1998 .

[208]  T. Murakami,et al.  Petrology and mineralogy of the Yamato‐86751 CV3 chondrite , 1994 .

[209]  E. Gibson,et al.  The Antarctic environment and its effect upon the total carbon and sulfur abundances in recovered meteorites , 1980 .

[210]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[211]  J. P. Willis,et al.  THE CHEMICAL COMPOSITION OF KAINSAZ AND EFREMOVKA , 1973 .

[212]  R. V. Morris,et al.  Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .

[213]  R. Clayton,et al.  CV3 Chondrites: Three Subgroups, Not Two , 1997 .

[214]  M. Lipschutz,et al.  Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements , 1998 .

[215]  Michael J. Gaffey,et al.  Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies , 2010 .

[216]  A. Dollfus Physical Studies of Asteroids by Polarization of the Light , 1971 .

[217]  S. Simon,et al.  Petrography and olivine mineral chemistry of chondrules and inclusions in the Allende meteorite. , 1979 .

[218]  V. Formisano,et al.  The Renazzo meteorite , 1993 .

[219]  O. Matsubaya,et al.  Carbon Isotopic Compositions in Antarctic Carbonaceous Chondrites , 1993 .

[220]  Y. Ikeda Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH-77307 (C3), Y-790123 (C2), Y-75293 (C2), and Y-74662 (C2) , 1983 .

[221]  L. Grossman :Meteorites: Their Record of Early Solar-System History , 1987 .

[222]  T. Kojima,et al.  Ca-Al-rich inclusions in three Antarctic CO3 chondrites, Yamato-81020 Yamato-82050 and Yamato-790992: Record of lowtemperature alteration , 1995 .

[223]  Near-IR Spectroscopy and Possible Meteorite Analogs for Asteroid (253) Mathilde , 2007 .

[224]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[225]  L. Colangeli,et al.  A mixture of hydrogenated amorphous carbon grains and PAH molecules: a candidate for the unidentified infrared bands? , 1988 .

[226]  J. Akai,et al.  Carbon materials in Antarctic and nonAntarctic carbonaceous chondrites: high-resolution transmission electron microscopy , 2008 .

[227]  P. Bland,et al.  Aqueous Alteration, `Serpentinization' and the CM-C2ung-CI Connection by PSD-XRD , 2010 .

[228]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[229]  M. Zolensky,et al.  Microstructures of cylindrical tochilinites , 1986 .

[230]  E. Scott,et al.  Petrology of types 4–6 carbonaceous chondrites , 1985 .

[231]  A. Kearsley,et al.  The relationship between CK and CV chondrites , 2010 .

[232]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[233]  J. Fahey,et al.  An improved method for the determination of FeO in rocks and minerals including garnet , 1962 .

[234]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[235]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[236]  L. Grossman,et al.  Amoeboid olivine aggregates in the Allende meteorite , 1976 .

[237]  Clark R. Chapman,et al.  Galileo Photometry of Asteroid 951 Gaspra , 1994 .

[238]  D. Lauretta,et al.  A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.

[239]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[240]  C. Barbieri,et al.  Spectroscopic comparison of aqueous altered asteroids with CM2 carbonaceous chondrite meteorites , 1999 .

[241]  B. Mason,et al.  Catalog of Antarctic meteorites , 1980 .

[242]  L. Keller Petrography and Mineral Chemistry of Calcium-and Aluminum-rich Inclusions in the Maralinga CK4 Chondrite , 1992 .

[243]  M. Zolensky,et al.  Possible thermal metamorphism on the C, G, B, and F asteroids detected from their reflectance spectra in comparison with carbonaceous chondrites , 1994 .

[244]  F. C. Leonard On the Classification of Meteorites , 1944 .

[245]  K. L. Day Synthetic Phyllosilicates and the Matrix Material of C1 and C2 Chondrites , 1976 .

[246]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (O.35-2.55 microns); calcite, aragonite, and dolomite , 1986 .

[247]  O. Richard Norton,et al.  The Cambridge Encyclopedia of Meteorites , 2002 .

[248]  M. Weisberg,et al.  The GRO 95577 CR1 chondrite and hydration of the CR parent body , 2007 .

[249]  R. Clayton,et al.  Carbon isotopes and light element abundances in carbonaceous chondrites , 1986 .

[250]  D. Sherman,et al.  Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy , 1982 .

[251]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[252]  Denton S. Ebel,et al.  Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite , 2008 .

[253]  N. Takaaki Petrology and mineralogy of CK chondrites: Implications for the metamorphism of the CK chondrite parent body , 1993 .

[254]  M. Prinz,et al.  Petrology of ALH85085: a chondrite with unique characteristics , 1988 .

[255]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[256]  S. Derenne,et al.  Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .

[257]  D. Seifu,et al.  Ferric ion phases in Mössbauer spectra of “oxidized” and “reduced” CV3 chondrites. , 2000 .

[258]  F. Fanale,et al.  Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites , 1993 .

[259]  P. Buseck,et al.  Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite , 2006 .

[260]  L. Grossman,et al.  “Fluffy” Type A Ca-, Al-rich inclusions in the Allende meteorite , 1984 .

[261]  M. Moore,et al.  Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules , 1990 .

[262]  E. Cloutis Quantitative characterization of coal properties using bidirectional diffuse reflectance spectroscopy , 2003 .

[263]  J. Akai T-T-T diagram of serpentine and saponite, and estimation ofmetamorphic heating degree of Antarctic carbonaceous chondrites , 1992 .

[264]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[265]  B. Schmitt,et al.  Strength of the H2O near-infrared absorption bands in hydrated minerals: Effects of measurement geometry , 2008 .

[266]  C. Pillinger,et al.  Aqueous alteration without a pronounced oxygen‐isotopic shift: Implications for the asteroidal processing of chondritic materials , 2000 .

[267]  H. Palme,et al.  Origin of Chondrules and Matrix in Carbonaceous Chondrites , 1993 .

[268]  J. Mustard,et al.  Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials , 2007 .

[269]  B. Alpern,et al.  Distribution de la matière organique dans la météorite d'orgueil par microscopie en fluorescence , 1973 .

[270]  J. Aponte,et al.  Effects of secondary alteration on the composition of free and IOM-derived monocarboxylic acids in carbonaceous chondrites , 2011 .

[271]  J. Sunshine,et al.  Ancient Asteroids Enriched in Refractory Inclusions , 2008, Science.

[272]  Hideyasu Kojima,et al.  Magnetic properties and natural remanent magnetization of carbonaceous chondrites containing pyrrhotite , 1991 .

[273]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[274]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[275]  G. Cody,et al.  Isotopic and chemical variation of organic nanoglobules in primitive meteorites , 2013 .

[276]  A. Rubin Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments , 2010 .

[277]  R. Cohen,et al.  Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .

[278]  B. Weiss,et al.  Magnetic evidence for a partially differentiated carbonaceous chondrite parent body , 2010, Proceedings of the National Academy of Sciences.

[279]  K. McKeegan,et al.  Calcium‐aluminum‐rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites , 2002 .

[280]  Alan E. Rubin,et al.  Fractionated matrix composition in CV3 Vigarano and alteration processes on the CV parent asteroid , 2012 .

[281]  C. Moore,et al.  Characterization of submicron matrix phyllosilicates from Murray and Nogoya carbonaceous chondrites , 1979 .

[282]  G. Kurat,et al.  Crystal Structure and Composition of Cronstedtite from the Cochabamba Carbonaceous Chondrite , 1977 .

[283]  Akihide Kamei,et al.  Laboratory study of the bidirectional reflectance of powdered surfaces: On the asymmetry parameter of asteroid photometric data , 2002 .

[284]  L. Grossman Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite , 1975 .

[285]  M. Hodson,et al.  Laboratory simulation of terrestrial meteorite weathering using the Bensour (LL6) ordinary chondrite , 2006 .

[286]  I. Franchi,et al.  A new CK carbonaceous chondrite from Hammada Al Hamra, Libya , 2006 .

[287]  G. Wasserburg,et al.  An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites , 1998 .

[288]  A. Rubin,et al.  Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent‐body aqueous alteration , 2002 .

[289]  J. Cadogan,et al.  57Fe Mössbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes , 2002 .

[290]  E. E. Larson,et al.  Thermomagnetic analysis of meteorites, 2. C2 chondrites , 1974 .

[291]  R. Clayton,et al.  The Leoville (CV3) accretionary breccia , 1985 .

[292]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[293]  M. Zolensky,et al.  Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .

[294]  J. Kerridge,et al.  Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.

[295]  Tomoki Nakamura,et al.  Infrared spectroscopic taxonomy for carbonaceous chondrites from speciation of hydrous components , 2005 .

[296]  D. J. Barber Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.

[297]  Y. Ikeda,et al.  The alteration of chondrules and matrices in new Antarctic carbonaceous chondrites , 1984 .

[298]  P. Wachter,et al.  Optical properties of magnetite Fe3O4 , 1980 .

[299]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[300]  K. Bostrom,et al.  Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations , 1965 .

[301]  A. Rubin A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites , 1992 .

[302]  R. Burns,et al.  Nanophase mixed-valence iron minerals in meteorites identified by cryogenic Mössbauer spectroscopy , 1994 .

[303]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[304]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[305]  M. Zolensky,et al.  Spatial distribution of organic matter in the Bells CM2 chondrite using near‐field infrared microspectroscopy , 2010 .

[306]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[307]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[308]  M. Gaffey,et al.  Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids , 1993 .

[309]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[310]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[311]  M. N. Bass Montmorillonite and serpentine in Orgueil meteorite , 1971 .

[312]  E. A. King,et al.  Accretionary dark rims in unequilibrated chondrites , 1980 .

[313]  K. Keil,et al.  Volatile-poor chondrules in CH carbonaceous chondrites: Formation at high ambient nebular temperature , 2000 .

[314]  M. Prinz,et al.  Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebular origin , 1998 .

[315]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[316]  V. Busarev Hydrated Silicates on M-, S-, and E-Type Asteroids as Possible Traces of Collisions with Bodies from the Jupiter Growth Zone , 2002 .

[317]  Joseph Veverka,et al.  When are spectral reflectance curves comparable , 1982 .

[318]  J. Wasson,et al.  The compositional classification of chondrites: III. Ungrouped carbonaceous chondrites , 1982 .

[319]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[320]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[321]  C. Wynter,et al.  Mossbauer Study of the Allende Meteorite , 1984 .

[322]  A. Steele,et al.  Carbonaceous Chondrite Groups Discerned Using Raman Spectral Parameters , 2011 .

[323]  E. A. King,et al.  Allende dark inclusions , 1977 .

[324]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[325]  A. Rubin,et al.  A weathering index for CK and R chondrites , 2005 .

[326]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[327]  I. Ohnishi,et al.  Dark inclusions in the Mokoia CV3 chondrite: Evidence for aqueous alteration and subsequent thermal and shock metamorphism , 2002 .

[328]  J. Veverka,et al.  The wavelength dependence of phase coefficients , 1986 .

[329]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[330]  F. Vilas,et al.  CCD Reflectance Spectra of Selected Asteroids. II. Low-Albedo Asteroid Spectra and Data Extraction Techniques , 1993 .

[331]  M. Zolensky,et al.  The Meteoritical Bulletin, No. 89, 2005 September , 2005 .

[332]  Fabrizio Capaccioni,et al.  Phase curves of meteorites and terrestrial rocks: laboratory measurements and applications to asteroids , 1990 .

[333]  R. Binzel,et al.  Weathering in Antarctic H and CR chondrites: Quantitative analysis through Mössbauer spectroscopy , 1995 .

[334]  R. Stroud,et al.  Polyhedral serpentine grains in CM chondrites , 2006 .

[335]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[336]  H. McSween On the nature and origin of isolated olivine grains in carbonaceous chondrites , 1977 .

[337]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[338]  M. Prinz,et al.  The Grosvenor Mountains 95577 CR1 Chondrite and Hydration of the CR Chondrites , 2000 .

[339]  G. Kurat,et al.  Basalts in the Lancé Carbonaceous Chondrite , 1980 .

[340]  Tomas Kohout,et al.  Magnetic classification of stony meteorites: 1. Ordinary chondrites , 2003 .

[341]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[342]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[343]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[344]  C. Pillinger,et al.  Comparisons between Antarctic and non-Antarctic meteorites based on carbon isotope geochemistry , 1991 .

[345]  R. Binzel,et al.  Could G Asteroids be the Parent Bodies of the CM Chondrites , 1995 .

[346]  R. Silverstein,et al.  Spectrometric identification of organic compounds , 2013 .

[347]  T. Burbine Could G‐class asteroids be the parent bodies of the CM chondrites? , 1998 .

[348]  H. Yabuta,et al.  Solid‐state 13C NMR characterization of insoluble organic matter from Antarctic CM2 chondrites: Evaluation of the meteoritic alteration level , 2005 .

[349]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[350]  P. Buseck,et al.  Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites , 2003 .

[351]  Simone De LEUW,et al.  Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites , 2010 .

[352]  B. Schmitt,et al.  Structural and Functional Micro-Infrared Survey of Pristine Carbonaceous Chondrites Insoluble Organic Matter , 2010 .

[353]  T. Burbine,et al.  Mineralogical analysis of the Eos family from near-infrared spectra , 2008 .

[354]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[355]  M. Gaffey,et al.  Mineralogical and petrological characterizations of asteroid surface materials , 1979 .

[356]  C. Pillinger,et al.  Determination of Sulphur-Bearing Components in C1 and C2 Carbonaceous Chondrites by Stepped Combustion , 1991 .

[357]  T. Noguchi Petrology and mineralogy of the PCA 91082 chondrite and its comparison with the Yamato-793495(CR) chondrite , 1995 .

[358]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[359]  A. Rubin,et al.  Lewis Cliff 85332: A unique carbonaceous chondrite , 1990 .

[360]  M. Zolensky,et al.  New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites , 1999 .

[361]  S. Simon,et al.  Bulk compositions of chondrules in the Allende meteorite , 1980 .

[362]  D. Sears,et al.  Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites , 1991 .

[363]  S. Ergun,et al.  Optical Properties of Coals and Graphite , 1967 .

[364]  A. Brearley Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite , 1995 .

[365]  R. B. Singer The Dark Materials on Mars: I. New Information from Reflectance Spectroscopy on the Extent and Mode of Oxidation , 1980 .

[366]  Alexander T. Basilevsky,et al.  Effects of Microsecond Pulse Laser Irradiation on Vis-NIR Reflectance Spectrum of Carbonaceous Chondrite Simulant: Implications for Martian Moons and Primitive Asteroids , 2003 .

[367]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[368]  L. Grossman,et al.  Accretionary rims on inclusions in the Allende meteorite , 1985 .

[369]  E. Anders,et al.  Interstellar Molecules: Origin by Catalytic Reactions on Grain Surfaces? , 1974 .

[370]  James C. Clark,et al.  Maralinga, a metamorphosed carbonaceous chondrite found in Australia , 1992 .

[371]  Faith Vilas,et al.  A Cheaper, Faster, Better Way to Detect Water of Hydration on Solar System Bodies , 1994 .

[372]  A. Brearley Ubiquitous Nanophase Fe,Ni Carbides in Murchison Fine-grained Rims: Possible Relicts of Nebular Fischer-Tropsch Reactions , 2003 .

[373]  J. A. Peck,et al.  The origin of ferrous zoning in Allende chondrule olivines , 1986 .

[374]  J. Goguen,et al.  Near-opposition limb darkening of solids of planetary interest , 1978 .

[375]  Sara S. Russell,et al.  Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations , 2008, 0810.2174.

[376]  The Effect of Aqueous Alteration and Metamorphism in the Survival of Presolar Silicate Grains in Chondrites , 2009, Publications of the Astronomical Society of Australia.

[377]  N. Thomas,et al.  Photometry of meteorites , 2012 .

[378]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[379]  J. Kerridge LOW‐TEMPERATURE MINERALS FROM THE FINE‐GRAINED MATRIX OF SOME CARBONACEOUS METEORITES , 1964 .

[380]  R. G. J. Strens,et al.  Mineralogical Applications of Crystal Field Theory , 1973 .

[381]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[382]  Dorian G. W. Smith,et al.  Reflectance spectra of mafic silicate-opaque assemblages with applications to meteorite spectra , 1990 .

[383]  W. Egan,et al.  Photometric and polarimetric properties of the Bruderheim chondritic meteorite , 1973 .

[384]  A. Rubin,et al.  On the origin of shocked and unshocked CM clasts in H‐chondrite regolith breccias , 2009 .

[385]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[386]  Keith R. Jennings,et al.  Spectrometric identification of organic compounds (Fifth Edition) R. M. SILVERSTEIN, G. C. BASSLER AND T. C. MORRILL. Wiley, New York, 1991. No. of pages: 430. ISBN 0471 63404 2. Price: £50.25, $76.10 , 1991 .

[387]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[388]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[389]  D. Lauretta,et al.  Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body , 2005 .

[390]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[391]  E. Gibson,et al.  Total carbon and sulfur abundances in Antarctic meteorites , 1979 .

[392]  J. Wood,et al.  The mineral chemistry and origin of inclusion matrix and meteorite matrix in the Allende CV3 chondrite , 1984 .

[393]  M. Michel-Lévy Étude Minéralogique De La Chondrite C III De Lancé , 1969 .

[394]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[395]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[396]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[397]  C. Bendersky,et al.  Asuka-881632: The First CO3.1? , 2006 .

[398]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[399]  R. Clayton,et al.  Dark inclusions in Allende, Leoville, and Vigarano - Evidence for nebular oxidation of CV3 constituents , 1990 .

[400]  M. Kumazawa,et al.  Preferred orientation of phyllosilicates in Yamato-74642 and -74662, in relation to deformation of C2 chondrites , 1982 .

[401]  I. Franchi,et al.  Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions , 2006 .

[402]  J. Carvano,et al.  Search for relations among a sample of 460 asteroids with featureless spectra , 2003 .

[403]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[404]  B. Mason Olivine composition in chondrites , 1963 .

[405]  H. McSween Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .

[406]  M. Zolensky,et al.  Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids , 1997 .

[407]  Min Sung Lee,et al.  Origin of metallic Fe-Ni in Renazzo and related chondrites , 1992 .

[408]  M. Gaffey,et al.  Spectral reflectance properties of carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites , 2012 .

[409]  L. Lebofsky,et al.  The composition of asteroid 2 Pallas and its relation to primitive meteorites , 1983 .

[410]  Tomoki Nakamura Yamato 793321 CM chondrite: Dehydrated regolith material of a hydrous asteroid , 2006 .

[411]  R. Kaiser,et al.  Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. I. Synthesis of Polycyclic Aromatic Hydrocarbons by a Cosmic-Ray-Induced Multicenter Mechanism , 1997 .

[412]  M. Bourot‐Denise,et al.  The Paris CM Chondrite Yields New Insights on the Onset of Parent Body Alteration , 2010 .

[413]  J. Rouzaud,et al.  Use of Combined Spectroscopic and Microscopic Tools for Deciphering the Chemical Structure and Origin of the Insoluble Organic Matter in the Orgueil and Murchison Meteorites , 2002 .

[414]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[415]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[416]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[417]  D. Sears,et al.  The Colony meteorite and variations in CO3 chondrite properties , 1985 .

[418]  D. Lazzaro,et al.  A spectroscopic study of the Themis family , 1999 .

[419]  J. B. Adams,et al.  Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .

[420]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[421]  B. Draine Tabulated optical properties of graphite and silicate grains , 1985 .

[422]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .