Quantum cluster theories

Quantum cluster approaches offer new perspectives to study the complexities of macroscopic correlated fermion systems. These approaches can be understood as generalized mean-field theories. Quantum cluster approaches are non-perturbative and are always in the thermodynamic limit. Their quality can be systematically improved, and they provide complementary information to finite size simulations. They have been studied intensively in recent years and are now well established. After a brief historical review, this article comparatively discusses the nature and advantages of these cluster techniques. Applications to common models of correlated electron systems are reviewed.

[1]  T. Maier,et al.  Comment on ``Cluster methods for strongly correlated electron systems'' , 2005 .

[2]  P. Phillips,et al.  Nonperturbative approach to full Mott behavior , 2004 .

[3]  T. Schulthess,et al.  Fluctuation-exchange supplemented quantum Monte Carlo approach to the Hubbard model , 2004 .

[4]  T. Maier,et al.  Kinetic energy driven pairing in cuprate superconductors. , 2004, Physical review letters.

[5]  G. Kotliar,et al.  Nonlocal Coulomb interactions and metal-insulator transition in Ti2O3: a cluster LDA+DMFT approach. , 2003, Physical review letters.

[6]  W. Hanke,et al.  Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions , 2003, cond-mat/0309407.

[7]  A. Tremblay,et al.  Hot spots and pseudogaps for hole- and electron-doped high-temperature superconductors. , 2003, Physical review letters.

[8]  G. Biroli,et al.  Cluster dynamical mean field analysis of the mott transition. , 2003, Physical review letters.

[9]  T. Pruschke,et al.  Phase diagram of the frustrated Hubbard model , 2003, cond-mat/0308202.

[10]  G. Biroli,et al.  Cluster dynamical mean-field theories: Causality and classical limit , 2003, cond-mat/0307587.

[11]  J. Freericks,et al.  Exact dynamical mean-field theory of the Falicov-Kimball model , 2003 .

[12]  W. Linden,et al.  Spectral function of electron-phonon models by cluster perturbation theory , 2003, cond-mat/0306740.

[13]  M. Potthoff Self-energy-functional approach: Analytical results and the Mott-Hubbard transition , 2003, cond-mat/0306278.

[14]  Columbia University,et al.  Fictive impurity models: An alternative formulation of the cluster dynamical mean-field method , 2003, cond-mat/0306178.

[15]  J. Hague Electron and phonon dispersions of the two-dimensional Holstein model: effects of vertex and non-local corrections , 2003 .

[16]  M. Potthoff,et al.  Variational cluster approach to correlated electron systems in low dimensions. , 2003, Physical review letters.

[17]  M. Jarrell,et al.  Dynamical cluster approximation employing the fluctuation exchange approximation as a cluster solver , 2003 .

[18]  M. Potthoff Self-energy-functional approach to systems of correlated electrons , 2003, cond-mat/0301137.

[19]  W. Linden,et al.  Low-temperature Lanczos method for strongly correlated systems , 2002, cond-mat/0211165.

[20]  P. Phillips,et al.  Pseudogap in doped Mott insulators is the near-neighbor analogue of the Mott gap. , 2002, Physical review letters.

[21]  G. Kotliar,et al.  Cellular dynamical mean-field theory for the one-dimensional extended Hubbard model , 2002, cond-mat/0206166.

[22]  Cincinnati,et al.  Two Quantum Cluster Approximations , 2002, cond-mat/0205460.

[23]  Y. Kakehashi Many-body coherent potential approximation, dynamical coherent potential approximation, and dynamical mean-field theory , 2002 .

[24]  D. S'en'echal,et al.  Cluster perturbation theory for Hubbard models , 2002, cond-mat/0205044.

[25]  Y. Shimizu Dynamical Cluster Approximation for the Periodic Anderson Model : Competition between Local and Non-local Correlations , 2002 .

[26]  N. Kawakami,et al.  Spectral functions in itinerant electron systems with geometrical frustration , 2002, cond-mat/0204093.

[27]  P. Kes,et al.  Superconductivity-Induced Transfer of In-Plane Spectral Weight in Bi2Sr2CaCu2O8+δ , 2002, Science.

[28]  Karlsruhe,et al.  Analysis of the dynamical cluster approximation for the Hubbard model , 2002, cond-mat/0201186.

[29]  T. Pruschke,et al.  Magnetism and phase separation in the ground state of the Hubbard model , 2002, cond-mat/0201145.

[30]  T. Maier,et al.  Comparison of two-quantum-cluster approximations , 2001, cond-mat/0110192.

[31]  G. Biroli,et al.  Cluster methods for strongly correlated electron systems , 2001, cond-mat/0107108.

[32]  W. Hanke,et al.  Evolution of the stripe phase as a function of doping from a theoretical analysis of angle-resolved photoemission data , 2001, cond-mat/0103030.

[33]  W. Hanke,et al.  Spectral Properties of High-Tc Cuprates via a Cluster-Perturbation Approach , 2001, cond-mat/0111061.

[34]  Mark Jarrell,et al.  Quantum Monte Carlo algorithm for nonlocal corrections to the dynamical mean-field approximation , 2001 .

[35]  Tran Minh-Tien,et al.  Correlated hopping in the Falicov-Kimball model: a dynamical mean-field study , 2001 .

[36]  P. Phillips,et al.  Local dynamics and strong correlation physics: One- and two-dimensional half-filled Hubbard models , 2001, cond-mat/0104478.

[37]  Tran Minh-Tien Nonlocal dynamical correlations in the Hubbard model: A noncrossing approximation study , 2001 .

[38]  D. Vollhardt,et al.  Finite-temperature numerical renormalization group study of the Mott transition , 2000, cond-mat/0012329.

[39]  T. Maier,et al.  Phase diagram of the Hubbard model: Beyond the dynamical mean field , 2000, cond-mat/0011282.

[40]  S. Moukouri,et al.  Absence of a Slater transition in the two-dimensional Hubbard model. , 2000, Physical review letters.

[41]  G. Kotliar,et al.  Cellular Dynamical Mean Field Approach to Strongly Correlated Systems , 2000, cond-mat/0010328.

[42]  H. R. Krishnamurthy,et al.  Systematic and Causal Corrections to the Coherent Potential Approximation , 2000, cond-mat/0006431.

[43]  Jarrell,et al.  Pseudogaps in the 2D Hubbard Model. , 2001, Physical review letters.

[44]  Eder,et al.  Stripes in doped antiferromagnets: single-particle spectral weight , 2000, Physical review letters.

[45]  M. Laad,et al.  Non-local effects in the fermion dynamical mean-field framework; application to the two-dimensional Falicov-Kimball model , 2000 .

[46]  T. Pruschke,et al.  Incoherence in bilayer systems with strong electronic correlations , 2000 .

[47]  Keller,et al.  d-wave superconductivity in the hubbard model , 2000, Physical review letters.

[48]  T. Pruschke,et al.  Low-energy scale of the periodic Anderson model , 2000, cond-mat/0001357.

[49]  A. I. Lichtenstein,et al.  Antiferromagnetism and d -wave superconductivity in cuprates: A cluster dynamical mean-field theory , 1999, cond-mat/9911320.

[50]  W. Metzner,et al.  Renormalization-group analysis of the two-dimensional Hubbard model , 1999, cond-mat/9908471.

[51]  Perez,et al.  Spectral weight of the hubbard model through cluster perturbation theory , 1999, Physical review letters.

[52]  D. Poulin,et al.  Many-body theory versus simulations for the pseudogap in the Hubbard model , 1999, cond-mat/9908053.

[53]  T. Pruschke,et al.  A non-crossing approximation for the study of intersite correlations , 1999, cond-mat/9906253.

[54]  M. Jarrell,et al.  Maximum entropy method of obtaining thermodynamic properties from quantum Monte Carlo simulations , 1999, cond-mat/9906155.

[55]  A. Tremblay,et al.  Strong-coupling perturbation theory of the Hubbard model , 1999, cond-mat/9905242.

[56]  Bangalore,et al.  Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems , 1999, cond-mat/9903273.

[57]  A. Michel,et al.  Directional effects of heavy-ion irradiation in Tb/Fe multilayers , 2000 .

[58]  T. Pruschke,et al.  Electronic properties of CuO2-planes: A DMFT study , 2000 .

[59]  Minh-Tien Tran Inclusion of nonlocal correlations in the dynamical mean-field approach to finite-dimension systems , 1999 .

[60]  Tran Minh-Tien Effect of nonlocal charge correlations on the Mott-Hubbard transition , 1999 .

[61]  D. Scalapino Superconductivity and Spin Fluctuations , 1999, cond-mat/9908287.

[62]  T. Timusk,et al.  The pseudogap in high-temperature superconductors: an experimental survey , 1999, cond-mat/9905219.

[63]  R. Bulla ZERO TEMPERATURE METAL-INSULATOR TRANSITION IN THE INFINITE-DIMENSIONAL HUBBARD MODEL , 1999, cond-mat/9902290.

[64]  L. N. Oliveira,et al.  LOW-ENERGY SPECTRAL DENSITY FOR THE ALEXANDER-ANDERSON MODEL , 1999 .

[65]  Tran Minh-Tien NONLOCAL DYNAMICAL CORRELATIONS IN THE FALICOV-KIMBALL MODEL , 1998 .

[66]  J. Richter,et al.  EXACT DIAGONALIZATION OF THE S = 1/2 HEISENBERG ANTIFERROMAGNET ON FINITE BCC LATTICES TO ESTIMATE PROPERTIES ON THE INFINITE LATTICE , 1998, cond-mat/9809405.

[67]  T. Pruschke,et al.  Magnetic properties of the three-band Hubbard model , 1998, cond-mat/9805314.

[68]  London,et al.  Numerical renormalization group calculations for the self-energy of the impurity Anderson model , 1998, cond-mat/9804224.

[69]  H. R. Krishnamurthy,et al.  Nonlocal Dynamical Correlations of Strongly Interacting Electron Systems , 1998, cond-mat/9803295.

[70]  H. Schulz,et al.  Weakly correlated electrons on a square lattice: Renormalization-group theory , 1997, cond-mat/9703189.

[71]  Philip W. Anderson,et al.  The Theory of Superconductivity in the High-Tc Cuprates , 1998 .

[72]  D. D. Betts,et al.  Extension of the Method of Exact Diagonalization of Quantum Spin Models to Finite Face Centred Cubic Lattices and Estimation of the T=0 Properties of the S= 1/2 XY Ferromagnet on the Infinite fcc Lattice , 1997 .

[73]  K. Fischer DIAGRAMMATIC METHOD FOR INVESTIGATING UNIVERSAL BEHAVIOR OF IMPURITY SYSTEMS , 1997, cond-mat/9807134.

[74]  H. Matsumoto,et al.  TWO-SITE CORRELATION IN ANALYSIS OF THE HUBBARD MODEL , 1997 .

[75]  J. Serene,et al.  VERTEX SYMMETRY AND THE ASYMPTOTIC FREQUENCY DEPENDENCE OF THE SELF-ENERGY , 1997 .

[76]  J. Freericks,et al.  Protracted screening in the periodic Anderson model , 1996, cond-mat/9610188.

[77]  P. Anderson A re-examination of concepts in magnetic metals: The ‘nearly antiferromagnetic Fermi liquid’ , 1997 .

[78]  Bennemann,et al.  Dynamical mean-field theory for perovskites. , 1996, Physical review. B, Condensed matter.

[79]  Hess,et al.  Incipient antiferromagnetism and low-energy excitations in the half-filled two-dimensional Hubbard model. , 1995, Physical review letters.

[80]  K. Bennemann,et al.  A new approach for perovskites in large dimensions , 1995, cond-mat/9510003.

[81]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[82]  D. D. Betts,et al.  Improved finite-lattice method for estimating the zero-temperature properties of two-dimensional lattice models , 1996 .

[83]  Mark Jarrell,et al.  Bayesian Inference and the Analytic Continuation of Imaginary-Time Quantum Monte Carlo Data , 1995 .

[84]  Schiller,et al.  Systematic 1/d corrections to the infinite-dimensional limit of correlated lattice electron models. , 1995, Physical review letters.

[85]  T. Pruschke,et al.  Anomalous normal-state properties of high-Tc superconductors: intrinsic properties of strongly correlated electron systems? , 1995, supr-con/9502001.

[86]  Sarkar,et al.  Spectral weight function for the half-filled Hubbard model: A singular value decomposition approach. , 1995, Physical review letters.

[87]  H. Raedt,et al.  Single-particle self-energy and optical conductivity of the simplified Hubbard model , 1994 .

[88]  P. Dongen,et al.  Extended Hubbard model at weak coupling. , 1994 .

[89]  Oliveira Generalized numerical renormalization-group method to calculate the thermodynamical properties of impurities in metals. , 1994, Physical review. B, Condensed matter.

[90]  Caffarel,et al.  Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. , 1994, Physical review letters.

[91]  Si,et al.  Correlation induced insulator to metal transitions. , 1993, Physical review letters.

[92]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[93]  Y. Kuramoto,et al.  Application of the numerical renormalization group method to the hubbard model in infinite dimensions , 1994 .

[94]  C. Gros,et al.  A self‐consistent cluster study of the Emery model , 1994 .

[95]  Masuo Suzuki,et al.  Quantum Monte Carlo Methods in Condensed Matter Physics , 1993 .

[96]  H. Akhlaghpour,et al.  QUANTUM MONTE CARLO IN THE INFINITE DIMENSIONAL LIMIT , 1993 .

[97]  H. Raedt,et al.  The simplified Hubbard model in one and two dimensions , 1993 .

[98]  Valentí,et al.  Cluster expansion for the self-energy: A simple many-body method for interpreting the photoemission spectra of correlated Fermi systems. , 1993, Physical review. B, Condensed matter.

[99]  de Raedt H,et al.  Gaps in densities of states of two Hubbard-like models. , 1993, Physical review letters.

[100]  Cox,et al.  Hubbard model at infinite dimensions: Thermodynamic and transport properties. , 1992, Physical review. B, Condensed matter.

[101]  M. Springford The Kondo problem to heavy fermions , 1993 .

[102]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions by Alexander Cyril Hewson , 1993 .

[103]  White,et al.  Pseudogap formation in the half-filled Hubbard model. , 1993, Physical review. B, Condensed matter.

[104]  Haan,et al.  Ground-state staggered magnetization of the antiferromagnetic Heisenberg model. , 1992, Physical review. B, Condensed matter.

[105]  T. Pruschke,et al.  Transport properties of the infinite-dimensional Hubbard model , 1992, cond-mat/9208002.

[106]  O. Sakai,et al.  Excitation Spectra of the Two Impurity Anderson Model. I. Critical Transition in the Two Magnetic Impurity Problem and the Roles of the Parity Splitting , 1992 .

[107]  T. Pruschke,et al.  Magnetic and dynamic properties of the Hubbard model in infinite dimensions , 1992, cond-mat/9207012.

[108]  Jarrell,et al.  Hubbard model in infinite dimensions: A quantum Monte Carlo study. , 1992, Physical review letters.

[109]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[110]  Antonios Gonis,et al.  Green functions for ordered and disordered systems , 1992 .

[111]  Pines,et al.  Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. , 1991, Physical review letters.

[112]  P. Anderson The theory of superconductivity , 1991 .

[113]  Kampf Ap Cluster method for the Hubbard model: Local moments and short-range correlations. , 1991 .

[114]  White,et al.  Conserving approximations for strongly fluctuating electron systems. II. Numerical results and parquet extension. , 1991, Physical review. B, Condensed matter.

[115]  Kampf,et al.  Spectral function and photoemission spectra in antiferromagnetically correlated metals. , 1990, Physical review. B, Condensed matter.

[116]  Y. Kuramoto,et al.  Self-Consistent Dynamical Theory for the Anderson Lattice , 1990 .

[117]  O. Sakai,et al.  Excitation spectra of two impurity Anderson model , 1990 .

[118]  Zhang Fc,et al.  Validity of the t - J model , 1990 .

[119]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[120]  T. Pruschke,et al.  The Anderson model with finite Coulomb repulsion , 1989 .

[121]  O. Sakai,et al.  Single-Particle and Magnetic Excitation Spectra of Degenerate Anderson Model with Finite f–f Coulomb Interaction , 1989 .

[122]  C. Itzykson,et al.  Statistical Field Theory , 1989 .

[123]  U. Brandt,et al.  Thermodynamics and correlation functions of the Falicov-Kimball model in large dimensions , 1989 .

[124]  E. Müller-Hartmann The Hubbard model at high dimensions: some exact results and weak coupling theory , 1989 .

[125]  White,et al.  Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. , 1989, Physical review letters.

[126]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[127]  C. Itzykson,et al.  Strong coupling, Monte Carlo methods, conformal field theory, and random systems , 1989 .

[128]  N. Grewe,et al.  Transport properties of the Anderson lattice , 1988 .

[129]  Dagotto,et al.  Zero-temperature properties of the two-dimensional Heisenberg antiferromagnet: A numerical study. , 1988, Physical review. B, Condensed matter.

[130]  Emery,et al.  Mechanism of High-Temperature Superconductivity , 2019 .

[131]  Jones,et al.  Low-temperature properties of the two-impurity Kondo Hamiltonian. , 1988, Physical review letters.

[132]  R. Bishop,et al.  Recent Progress in MANY-BODY THEORIES , 1988 .

[133]  T. Pruschke,et al.  Investigation of the low temperature behaviour of the Anderson lattice , 1988 .

[134]  Zhang,et al.  Effective Hamiltonian for the superconducting Cu oxides. , 1988, Physical review. B, Condensed matter.

[135]  N. E. Bickers Review of techniques in the large-N expansion for dilute magnetic alloys , 1987 .

[136]  N. Grewe A theory for the Anderson lattice , 1987 .

[137]  Cox,et al.  Self-consistent large-N expansion for normal-state properties of dilute magnetic alloys. , 1987, Physical review. B, Condensed matter.

[138]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[139]  Jones,et al.  Study of two magnetic impurities in a Fermi gas. , 1987, Physical review letters.

[140]  U. Brandt,et al.  Ground state properties of a spinless Falicov-Kimball model; additional features , 1987 .

[141]  M. Suzuki,et al.  Statistical mechanical theory of cooperative phenomena. I: General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena , 1986 .

[142]  Fye,et al.  Monte Carlo method for magnetic impurities in metals. , 1986, Physical review letters.

[143]  U. Brandt,et al.  Exact results for the distribution of thef-level ground state occupation in the spinless Falicov-Kimball model , 1986 .

[144]  E. Müller-Hartmann Self-consistent perturbation theory of the anderson model: Ground state properties , 1984 .

[145]  N. Grewe Spectral properties of the Anderson model , 1983 .

[146]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[147]  Y. Kuramoto Self-consistent perturbation theory for dynamics of valence fluctuations , 1983 .

[148]  G. Czycholl,et al.  Integral equation studies for f-electron energies of rare-earth ions in a metallic compound , 1983 .

[149]  H. R. Krishnamurthy,et al.  Renormalization-group approach to the Anderson model of dilute magnetic alloys. I. Static properties for the symmetric case , 1980 .

[150]  H. J. Vidberg,et al.  Solving the Eliashberg equations by means ofN-point Padé approximants , 1977 .

[151]  David P. Landau,et al.  Finite-size behavior of the Ising square lattice , 1976 .

[152]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[153]  F. Ducastelle Analytic properties of the coherent potential approximation and of its molecular generalizations , 1974 .

[154]  H. Sumi Exciton Polarons of Molecular Crystal Model. I. –Dynamical CPA– , 1974 .

[155]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[156]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[157]  V. Heine,et al.  Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .

[158]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[159]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .

[160]  藤田 純一,et al.  A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems, McGraw-Hill Book Co., New York, 1971, 601頁, 15×23cm, 7,800円. , 1971 .

[161]  F. Brouers,et al.  Comparison of the Average-t-Matrix and Coherent-Potential Approximations in Substitutional Alloys , 1971 .

[162]  H. Shiba A Reformulation of the Coherent Potential Approximation and Its Applications , 1971 .

[163]  Hiroshi Akima,et al.  A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.

[164]  J. C. Kimball,et al.  Perturbation Technique for the Anderson Hamiltonian , 1970 .

[165]  J. Schoen Augmented-Plane-Wave Virtual-Crystal Approximation , 1969 .

[166]  L. M. Roth Electron Correlation in Narrow Energy Bands. I. The Two-Pole Approximation in a NarrowSBand , 1969 .

[167]  M. Tsukada A New Method for the Electronic Structure of Random Lattice –the Coexistence of the Local and the Band Character– , 1969 .

[168]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[169]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .

[170]  D. W. Taylor Vibrational Properties of Imperfect Crystals with Large Defect Concentrations , 1967 .

[171]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[172]  S. Edwards,et al.  The electronic structure of liquid insulators , 1963, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[173]  G. Baym,et al.  Self-Consistent Approximations in Many-Body Systems , 1962 .

[174]  Leo P. Kadanoff,et al.  CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .

[175]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[176]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[177]  R. Parmenter ENERGY LEVELS OF A DISORDERED ALLOY , 1955 .

[178]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[179]  K. Cheng Theory of Superconductivity , 1948, Nature.

[180]  H. Bethe Statistical Theory of Superlattices , 1935 .

[181]  L. Nordheim Zur Elektronentheorie der Metalle. II , 1931 .

[182]  R. E Bishopt,et al.  Recent Progress in MANY-BODY THEORIES , 2022 .