A capacity scaling algorithm for M-convex submodular flow

This paper presents a faster algorithm for the M-convex submodular flow problem, which is a generalization of the minimum-cost flow problem with an M-convex cost function for the flow-boundary, where an M-convex function is a nonlinear nonseparable discrete convex function on integer points. The algorithm extends the capacity scaling approach for the submodular flow problem by Fleischer, Iwata and McCormick (2002) with the aid of a novel technique of changing the potential by solving maximum submodular flow problems.

[1]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[2]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[3]  András Frank,et al.  A Primal-Dual Algorithm for Submodular Flows , 1985, Math. Oper. Res..

[4]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[5]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[6]  C. SIAMJ. A FASTER SCALING ALGORITHM FOR MINIMIZING SUBMODULAR FUNCTIONS∗ , 2001 .

[7]  Akihisa Tamura A Coordinatewise Domain Scaling Algorithm for M-convex Function Minimization , 2002, IPCO.

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  Éva Tardos,et al.  Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..

[10]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[11]  S. Fujishige,et al.  New algorithms for the intersection problem of submodular systems , 1992 .

[12]  Satoru Iwata,et al.  A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem , 1999, IPCO.

[13]  Kazuo Murota,et al.  Convexity and Steinitz's Exchange Property , 1996, IPCO.

[14]  András Frank,et al.  Finding feasible vectors of Edmonds-Giles polyhedra , 1984, J. Comb. Theory, Ser. B.

[15]  Satoru Iwata,et al.  Conjugate Scaling Algorithm for Fenchel-Type Duality in Discrete Convex Optimization , 2002, SIAM J. Optim..

[16]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[17]  Akiyoshi Shioura,et al.  Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem , 2004, Discret. Appl. Math..

[18]  Satoru Iwata,et al.  A faster capacity scaling algorithm for minimum cost submodular flow , 2002, Math. Program..

[19]  Dorit S. Hochbaum,et al.  Solving the Convex Cost Integer Dual Network Flow Problem , 1999, Manag. Sci..

[20]  Kazuo Murota Submodular Flow Problem with a Nonseparable Cost Function , 1999, Comb..

[21]  S. Fujishige ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .

[22]  藤重 悟 Submodular functions and optimization , 1991 .

[23]  Kazuo Murota,et al.  Capacity scaling algorithm for scalable M-convex submodular flow problems , 2003, Optim. Methods Softw..

[24]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[25]  Dorit S. Hochbaum,et al.  Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems , 1994, Math. Oper. Res..

[26]  Satoru Iwata,et al.  A capacity scaling algorithm for convex cost submodular flows , 1996, SODA '96.

[27]  Maurice Queyranne,et al.  Minimizing a Convex Cost Closure Set , 2000, SIAM J. Discret. Math..

[28]  Kazuo Murota,et al.  Application of M-Convex Submodular Flow Problem to Mathematical Economics , 2001, ISAAC.

[29]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[30]  Kazuo Murota,et al.  Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..