Counting degenerate polynomials of fixed degree and bounded height
暂无分享,去创建一个
[1] Min Sha,et al. Counting and Testing Dominant Polynomials , 2014, Exp. Math..
[2] A. Dubickas. On the number of reducible polynomials of bounded naive height , 2014 .
[3] Fabrizio Barroero. Counting algebraic integers of fixed degree and bounded height , 2013, 1305.0482.
[4] Igor E. Shparlinski,et al. On the number of Eisenstein polynomials of bounded height , 2013, Applicable Algebra in Engineering, Communication and Computing.
[5] Martin Widmer,et al. Counting Lattice Points and O-Minimal Structures , 2012, 1210.5943.
[6] A. Dubickas. ROOTS OF UNITY AS QUOTIENTS OF TWO ROOTS OF A POLYNOMIAL , 2012, Journal of the Australian Mathematical Society.
[7] Maurice Mignotte,et al. Testing degenerate polynomials , 2011, Applicable Algebra in Engineering, Communication and Computing.
[8] Gerald Kuba,et al. On the distribution of reducible polynomials , 2009, 2008.05815.
[9] J. Vaaler,et al. Counting algebraic numbers with large height II , 2006 .
[10] Pieter Moree,et al. RECURRENCE SEQUENCES (Mathematical Surveys and Monographs 104) By GRAHAM EVEREST, ALF VAN DER POORTEN, IGOR SHPARLINSKI and THOMAS WARD: 318 pp., US$79.00, ISBN 0-8218-3387-1 (American Mathematical Society, Providence, RI, 2003) , 2004 .
[11] A. Dubickas,et al. ON SUBFIELDS OF A FIELD GENERATED BY TWO CONJUGATE ALGEBRAIC NUMBERS , 2004, Proceedings of the Edinburgh Mathematical Society.
[12] Arturas Dubickas,et al. Polynomials Irreducible by Eisenstein's Criterion , 2003, Applicable Algebra in Engineering, Communication and Computing.
[13] Jeffrey D. Vaaler,et al. The distribution of values of Mahler's measure , 2001 .
[14] Michel Waldschmidt,et al. Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables , 2000 .
[15] M. Mignotte,et al. Polynomials: An Algorithmic Approach , 1999 .
[16] K. Dörge. Abschätzung der Anzahl der reduziblen Polynome , 1965 .
[17] S. Schanuel,et al. On heights in number fields , 1964 .
[18] B. L. Waerden. Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt , 1936 .
[19] Randell Heyman,et al. On the Number of Polynomials of Bounded Height that Satisfy the Dumas Criterion , 2014, J. Integer Seq..
[20] T. N. Shorey. DIOPHANTINE APPROXIMATION ON LINEAR ALGEBRAIC GROUPS: TRANSCENDENCE PROPERTIES OF THE EXPONENTIAL FUNCTION IN SEVERAL VARIABLES (Grundlehren der Mathematischen Wissenschaften 326) By MICHEL WALDSCHMIDT: 633 pp., $58.50, ISBN 3-540-66785-7 (Springer, Berlin, 2000). , 2002 .
[21] Michel Waldschmidt,et al. Diophantine Approximation on Linear Algebraic Groups , 2000 .
[22] Ron Ferguson,et al. Irreducible polynomials with many roots of equal modulus , 1997 .
[23] David W. Boyd,et al. Irreducible polynomials with many roots of maximal modulus , 1994 .
[24] G. Pólya,et al. Problems and theorems in analysis , 1983 .