Counting degenerate polynomials of fixed degree and bounded height

[1]  Min Sha,et al.  Counting and Testing Dominant Polynomials , 2014, Exp. Math..

[2]  A. Dubickas On the number of reducible polynomials of bounded naive height , 2014 .

[3]  Fabrizio Barroero Counting algebraic integers of fixed degree and bounded height , 2013, 1305.0482.

[4]  Igor E. Shparlinski,et al.  On the number of Eisenstein polynomials of bounded height , 2013, Applicable Algebra in Engineering, Communication and Computing.

[5]  Martin Widmer,et al.  Counting Lattice Points and O-Minimal Structures , 2012, 1210.5943.

[6]  A. Dubickas ROOTS OF UNITY AS QUOTIENTS OF TWO ROOTS OF A POLYNOMIAL , 2012, Journal of the Australian Mathematical Society.

[7]  Maurice Mignotte,et al.  Testing degenerate polynomials , 2011, Applicable Algebra in Engineering, Communication and Computing.

[8]  Gerald Kuba,et al.  On the distribution of reducible polynomials , 2009, 2008.05815.

[9]  J. Vaaler,et al.  Counting algebraic numbers with large height II , 2006 .

[10]  Pieter Moree,et al.  RECURRENCE SEQUENCES (Mathematical Surveys and Monographs 104) By GRAHAM EVEREST, ALF VAN DER POORTEN, IGOR SHPARLINSKI and THOMAS WARD: 318 pp., US$79.00, ISBN 0-8218-3387-1 (American Mathematical Society, Providence, RI, 2003) , 2004 .

[11]  A. Dubickas,et al.  ON SUBFIELDS OF A FIELD GENERATED BY TWO CONJUGATE ALGEBRAIC NUMBERS , 2004, Proceedings of the Edinburgh Mathematical Society.

[12]  Arturas Dubickas,et al.  Polynomials Irreducible by Eisenstein's Criterion , 2003, Applicable Algebra in Engineering, Communication and Computing.

[13]  Jeffrey D. Vaaler,et al.  The distribution of values of Mahler's measure , 2001 .

[14]  Michel Waldschmidt,et al.  Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables , 2000 .

[15]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[16]  K. Dörge Abschätzung der Anzahl der reduziblen Polynome , 1965 .

[17]  S. Schanuel,et al.  On heights in number fields , 1964 .

[18]  B. L. Waerden Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt , 1936 .

[19]  Randell Heyman,et al.  On the Number of Polynomials of Bounded Height that Satisfy the Dumas Criterion , 2014, J. Integer Seq..

[20]  T. N. Shorey DIOPHANTINE APPROXIMATION ON LINEAR ALGEBRAIC GROUPS: TRANSCENDENCE PROPERTIES OF THE EXPONENTIAL FUNCTION IN SEVERAL VARIABLES (Grundlehren der Mathematischen Wissenschaften 326) By MICHEL WALDSCHMIDT: 633 pp., $58.50, ISBN 3-540-66785-7 (Springer, Berlin, 2000). , 2002 .

[21]  Michel Waldschmidt,et al.  Diophantine Approximation on Linear Algebraic Groups , 2000 .

[22]  Ron Ferguson,et al.  Irreducible polynomials with many roots of equal modulus , 1997 .

[23]  David W. Boyd,et al.  Irreducible polynomials with many roots of maximal modulus , 1994 .

[24]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .